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The problem of estimating the size of a backtrack tree is an important but hard problem in computational
sciences. An efficient solution of this problem can have a major impact on the hierarchy of complexity classes.
The first randomized procedure, which repeatedly generates random paths through the tree, was introduced
by Knuth. Unfortunately, as was noted by Knuth and a few other researchers, the estimator can introduce
a large variance and become ineffective in the sense that it underestimates the cost of the tree. Recently, a
new sequential algorithm called Stochastic Enumeration (SE) method was proposed by Rubinstein et al. The
authors showed numerically that this simple algorithm can be very efficient for handling different counting
problems, such as counting the number of satisfiability assignments and enumerating the number of perfect
matchings in bipartite graphs. In this paper we introduce a rigorous analysis of SE and show that it results
in significant variance reduction as compared to Knuth’s estimator. Moreover, we establish that for almost
all random trees the SE algorithm is a fully polynomial time randomized approximation scheme (FPRAS)
for the estimation of the overall tree size.
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1. INTRODUCTION
The problem of estimating the total cost of a backtrack tree is an important but hard
problem from both a theoretical and practical point of view. Consider a tree with node
set V, where a cost c(v) is associated with each node v ∈ V. In many practical situations
it is important to find the total cost of the tree,

∑
v∈V c(v).

For large trees the direct computation of this cost using tree traversal is expensive in
terms of computation effort. Hence, a Monte Carlo approach can be beneficial. Knuth
[1975] introduces a randomized algorithm that gives an unbiased estimator for this
problem. The proposed algorithm repeatedly generates a random walk from the tree
root to a leaf and counts the encountered node degrees (a more detailed explanation
will be provided in the next section).

The main disadvantage of Knuth’s approach is a large variance of the estimator that
can occur for some tree instances. A few attempts were made to improve Knuth’s al-
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gorithm. For example, Pudrom’s partial backtracking algorithm [Purdom 1978] allows
more than one child to be explored by the random walk. This multiple children explo-
ration is achieved by returning to the same node and choosing a different path to con-
tinue. Pudrom’s method, which employs an importance sampling approach [Rubinstein
and Kroese 2008], can offer an improved efficiency. Nevertheless, Chen [1992] showed
that in this case it is also hard to achieve a significant variance reduction without con-
siderable computational effort. Chen [1992] introduced another approach to handle the
tree cost estimation problem by using a stratified sampling method. Chen’s algorithm
has proven performance guaranty for some randomly generated instances.

The general problem of estimating the cost of a tree belongs to the complexity class
called #P [Valiant 1979]. This complexity class consists of the set of counting prob-
lems that are associated with a decision problem in NP (non–deterministic polynomial
time), e.g., how many solutions does a propositional formula have (#SAT)? The #P–
complete complexity class is a sub–class of #P consisting of those problems in #P to
which any other problem in #P can be reduced via a polynomial reduction. #SAT, for
example, is #P–complete. Interestingly, various #P–complete problems are associated
with an easy decision problem, i.e., the corresponding decision problem is in P (polyno-
mial time), such as satisfiability of propositional formulas in Disjunctive Normal Form
(DNF).

For some #P-complete problems there are known efficient approximations. For ex-
ample, Karp and Luby [1983] introduced a FPRAS for counting the solutions of DNF
satisfiability formulas. Similar results were obtained for the knapsack and permanent
counting problems by Dyer and Jerrum et al. [Dyer 2003; Jerrum et al. 2004].

Unfortunately, there are also many negative results. For example, [Dyer et al. 1999;
Vadhan 1997] showed that counting the number of vertex covers remains hard, even
when restricted to planar bipartite graphs of bounded degree or regular graphs of con-
stant degree. The theoretical importance of this counting problem follows from the fact
that finding an efficient algorithm (for example FPRAS) to some specific problems will
result in the collapse of polynomial hierarchy. For example, it was showed in Liu and
Lu [2013] that there is no efficient approximation algorithm capable to count vertex
covers if some vertex can appear in 6 clauses unless NP=RP, where RP stands for the
Randomized Polynomial Time complexity class [Motwani and Raghavan 1995]. The
findings of Liu and Lu are not very encouraging, since there is a direct correspondence
between counting combinatorial objects and their associated backtrack trees. For ex-
ample, we can define c(v) = 1 for every v ∈ V that corresponds to a valid vertex cover.
Thus, the estimation of a backtrack tree is at least as hard as the estimation of the
number of vertex covers.

There are two main approaches to tackle such difficult counting problems. The first
one is Markov Chain Monte Carlo (MCMC) and the second is sequential importance
sampling (SIS). Both approaches exploit the finding of Jerrum et al. [1986] that count-
ing is equivalent to uniform sampling over a suitably restricted set. MCMC methods
sample from such restricted regions by constructing an ergodic Markov chain with
limiting distribution equal to the desired uniform distribution. A number of MCMC
approaches with good empirical performance have been proposed [Botev and Kroese
2012; Jerrum and Sinclair 1996; Rubinstein 2009; Rubinstein et al. 2012]. There are
also many examples of successful SIS implementations on various counting problems;
see, for example, [Blitzstein and Diaconis 2011; Chen et al. 2005; Karp and Luby 1983;
Rubinstein 2012]. More recent advances and background material can be found in
Blanchet and Rudoy [2009].

In this article, we develop an adaptation of the Stochastic Enumeration (SE) method,
originally proposed in [Rubinstein 2012], for backtrack tree estimation. The SE algo-
rithm belongs to the sequential importance sampling family of algorithms, but the
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main difference between general SIS procedures and SE is that the latter employs
polynomial oracles during the execution and runs multiple trajectories in parallel in-
stead of repeatedly running single trajectories. It was shown numerically in [Rubin-
stein et al. 2013] that SE may introduce a significant variance reduction. The SE al-
gorithm has a budget parameter that limits the number of parallel random walks. We
show that the SE algorithm is an extension of Knuth’s estimator, in sense that if we set
the budget equal to one, the SE becomes equivalent to Knuth’s estimator. The reader
might think that the SE extension is just Knuth’s estimator that runs some trajec-
tories in parallel (and therefore brings little added value), but careful consideration
will reveal an additional and much more important property. The SE algorithm does
not operate on the original tree but rather on the associated “hyper tree”. We show
that this property has a crucial impact on the SE performance. In particular, it turns
the SE into a splitting algorithm. It was shown that such splitting mechanisms can
introduce a significant variance reduction [Rubinstein et al. 2013]. For a background
on the splitting methods, see [Botev and Kroese 2012; Garvels 2000; Glasserman et al.
1996]. For additional detailed explanation about the general SE method, we refer to
[Rubinstein et al. 2013].

The rest the paper is organized as follows. In Section 2 we introduce the SE algo-
rithm for counting trees. In Sections 3 and 4 we develop important theoretical prop-
erties of the SE estimator. In particular, we prove that the estimator is unbiased, and
that it has a recursive expression for the variance that is similar to the one given in
[Knuth 1975]. Moreover, we develop an upper bond for the variance and show that for
almost all random trees, the SE algorithm is a FPRAS for the estimation of the over-
all tree size. In Section 5 we provide additional numerical evidence for the accuracy
of our method. Finally, in Section 6 we summarize our findings and discuss possible
directions for future research.

2. ESTIMATING THE TOTAL COST OF A TREE
The SE extension is heavily based on the Knuth’s estimator [Knuth 1975], so we feel
that a short review of the latter is beneficial. Our setting is as follows. Consider a
rooted tree T = (V, E) with node set V and edge set E (so that |E| = |V| − 1). We denote
the root of the tree by v0, and for any v ∈ V the subtree rooted at v is denoted by Tv.
With each node v is associated a non–negative cost c(v). The main quantity of interest
is the total cost of the tree,

Cost(T ) =
∑
v∈V

c(v)

or, more generally, the total cost of a subtree Tv — denoted by Cost(Tv). For each node
v we denote the set of successors of v by S(v). Knuth’s Algorithm 1, [Knuth 1975],
outputs an unbiased estimator of the total cost of a subtree Tv rooted at v.

It was shown in [Knuth 1975] that for any sub-tree Tv of height h this algorithm has
the following properties.

— It creates a random walk {X0, X1, . . . , Xτ} on the tree (from root X0 = v to a leaf at
level τ 6 h) and returns the estimator

C = c(X0) +D0c(X1) +D0D1c(X2)

+D0D1D2c(X3) + · · ·+

 ∏
06j6τ−1

Dj

 c(Xτ ),
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ALGORITHM 1: Knuth’s algorithm for estimating the cost of a backtrack tree
Input: A tree Tv of height h, rooted at v.
Output: An unbiased estimator C of the total cost of tree Tv.
(1) (Initialization): Set k ← 0, D ← 1, X0 = v and C ← c(X0). Here D is the product of all

node degrees encountered in the tree.
(2) (Compute the successors): Let S(Xk) be the set of all successors of Xk and let Dk be the

number of elements of S(Xk). If k = h or when S(Xk) is empty, set Dk = 0.
(3) (Terminal position?): If Dk = 0, the algorithm stops, returning C as an estimator of

Cost(Tv).
(4) (Advance): Choose an element Xk+1 ∈ S(Xk) at random, each element being equally

likely. (Thus, each choice occurs with probability 1/Dk.) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1 and return to Step 2.

where Xj is the random variable that represents the tree node that was encountered
at step j of the random walk, and random variable Dj is the corresponding degree
of Xj .

— This estimator is unbiased:

E (C(Tv)) = Cost (Tv) .

— The variance of the estimator is given by:

Var (C(Tv)) = d
∑

16j6d

Var
(
C
(
Twj

))
+

∑
16i<j6d

(
Cost (Twi)− Cost

(
Twj

))2
, (1)

where w1, . . . , wd are the successors of v.

Remark 2.1 (Knuth’s Importance Sampling). Instead of choosing one of v’s succes-
sors from S(v) = {w1, . . . , wd} with equal probability, one can choose wj with probabil-
ity pj for j = 1, . . . , d, provided that

∑
16j6d pj = 1, where one should set D ← (1/pj)D

in Step 4 (instead of D ← D0D), when wj is selected. Knuth shows that in this case the
estimator remains unbiased, and that the variance is given by:

Var (C(Tv)) =
∑

16j6d

Var
(
C
(
Twj

))
pj

+
∑

16i<j6d

pi pj

(
Cost (Twi)

pi
− Cost

(
Twj

)
pj

)2

. (2)

In fact, if during the algorithm execution one is able to “guess” the costs of the subtrees,
a zero-variance estimator can be obtained.

Clearly, the last assumption is not practical, but some algorithms have tried to make
improvements by estimating those probabilities in a better manner [Avis and Devroye
2000]. Unfortunately, this strategy may even damage the algorithm performance, as
explained in the following example.

Example 2.2 (Choosing nonuniform probabilities). To understand why estimating
the importance sampling parameters (the probabilities of choosing the successors in
Remark 2.1) is probably hopeless in the general case, consider the simple example in
Figure 1. Suppose that the cost of every node is 1. The tree root v0 has two successors
(v1 and v2). The node v1 has a single successor v3 that is connected to a complete tree
with M − 1 nodes, such that M � k, and the node v2 is connected to k − 1 leaves.
In this context, the complete tree is a tree in which every level, except possibly the
deepest, is entirely filled. We will use the recursive formula (2) to calculate the variance
of the Knuth’s estimator. Note, that in this formula, each successor j is chosen with
probability pj subject to

∑
16j6d pj = 1. It is not very hard to see that Knuth’s estimator

delivers a zero-variance estimator on any complete tree, so Var(Tv1) = 0. It is also easy
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v0

v1

v3

M − 1

v2

k − 1 leaves

Fig. 1. An example tree.

to verify from (2) that Var(Tv2) = 0, because the node v2 is a father of k − 1 leaves. We
next consider the following possibilities.

(1) Suppose we choose v1 and v2 with equal probabilities, so pv1 = pv2 = 0.5. Then,

σ2
1 = Var(C) = 0 + (M − k)2.

(2) Suppose that one chooses to explore the tree from node v0 (level zero) to level 2;
that is, until node v3 in the left subtree and the k − 1 leaves in the right subtree.
Then, reasonable choices for pv1 and pv2 are 1/k and (k − 1)/k respectively. In this
case,

σ2
2 = Var(C) = 0 +

k − 1

k2

(
M
1
k

− k
k−1
k

)2

= (k − 1)

 M
1
k

− k
k−1
k

k

2

= (k − 1)

(
M − k

k − 1

)2

.

Consider now the benefit one can get from this particular change of measure. Clearly,

σ2
2

σ2
1

=
(k − 1)

(
M − k

k−1

)2
(M − k)2

,

which approaches k − 1 as M → ∞. Hence, for large M the performance is k − 1
times worse when applying the change of measure. So, it would be better to choose
the successors with equal probabilities. The latter will not only save on computational
effort needed to compute the new probabilities (pv1 and pv2 ) but will also reduce the
estimator’s variance.

The SE philosophy is that such estimation of importance weights is probably hope-
less and potentially harmful. Instead, SE will try to improve the estimation by running
a number of parallel random walks. We will show that this simple strategy can be very
beneficial in sense that it turns the SE into a splitting algorithm. To start with, we will
need a few definitions.
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Definition 2.3 (Hyper nodes and forests). Let {v1, . . . , vr} ⊆ V be tree nodes.

(1) We call a collection v = {v1, . . . , vr} of distinct nodes in the same level of the tree a
hyper node of cardinality |v| = r.

(2) Let v be a hyper node. Generalizing the tree node cost, we define the cost of the
hyper node as

c(v) =
∑
v∈v

c(v).

(3) Let v be a hyper node. Define the set of successors of v as

S(v) =
⋃
v∈v

S(v).

(4) Let v be a hyper node and let B ∈ N, B > 1. Define:

H(v) =

{{S(v)} if |S(v)| 6 B

{w | w ⊆ S(v), |w| = B} if |S(v)| > B.

(5) For each hyper node v let

Tv =
⋃
v∈v

Tv

be the forest of trees rooted at v. See Figure 2 for an example of hyper node v =
{v1, v2, v3, v4} and its corresponding forest Tv = {Tv1 , Tv2 , Tv3 , Tv4}.

(6) Let Tv be the forest of trees rooted at v. Define
S(m)(v) = S(S(S · · ·︸ ︷︷ ︸

m times

(v)) · · · )

to be the set of vertices at level m. (Note that S(0)(v) = v.)
(7) For each forest rooted at hypernode v, define its total cost as

Cost (Tv) =
∑
v∈v

Cost(Tv). (3)

vv1 v2 v3 v4

Fig. 2. Hyper node example.

We are ready to state the main SE algorithm.
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ALGORITHM 2: Stochastic Enumeration algorithm for estimating the cost of a backtrack tree
Input: A forest Tv of height h rooted at a hypernode v, and a budget B > 1.
Output: An unbiased estimator |v|CSE of the total cost of forest Tv.
(1) (Initialization): Set k ← 0, D ← 1, X0 = v and CSE ← c(X0)/|X0|.
(2) (Compute the successors): Let S(Xk) be the set of all successors of Xk.
(3) (Terminal position?): If |S(Xk)| = 0, the algorithm stops, returning |v|CSE as an

estimator of Cost(Tv).
(4) (Advance): Choose hyper node Xk+1 ∈ H(Xk) at random, each choice being equally likely.

(Thus, each choice occurs with probability 1/|H(Xk)|.) Set Dk = |S(Xk)|
|Xk|

and D ← DkD,

then set CSE ← CSE +
(

c(Xk+1)

|Xk+1|

)
D. Increase k by 1 and return to Step 2.

Let us have a closer look at Algorithm 2 and compare it with Knuth’s Algorithm 1.
Note that in Step 1, Knuth’s algorithm initializes X0 to be v while SE sets X0 = v. In
general, Algorithm 1 will operate on a single node at each step, while SE will maintain
a collection of such nodes (hyper nodes).

The SE algorithm continues to move down the tree to X1,X2, . . . by examining the
hyper nodes from the sets H(S(X0)), H(S(X1)), . . .. This procedure is performing a
random walk on the hyper nodes of the original tree T . It follows that SE is actually a
generalization of Knuth’s algorithm. Namely, consider the SE algorithm with budget
B = 1. In this case, all the hyper nodes have cardinality of 1 and we get the Knuth’s
estimator. Similar to Knuth’s Algorithm 1, the output of Algorithm 2 is a random vari-
able

CSE =
c(X0)

|X0|
+
|S(X0)|
|X0|

c(X1)

|X1|
+
|S(X0)|
|X0|

|S(X1)|
|X1|

c(X2)

|X2|

+ · · ·+

 ∏
06j6τ−1

|S(Xj)|
|Xj |

 c(Xτ )

|Xτ |
,

where τ 6 h.
At first glance, one might think that the SE extension is just Knuth’s estimator that

runs B parallel trajectories while estimating average node costs and degrees at each
tree level. We will show in the following sections that this is not so. Before we proceed
with a rigorous analysis, consider the following example. Despite its simplicity, it pro-
vides a good demonstration of SE’s built–in splitting mechanism and its corresponding
benefits.

Example 2.4. Consider the “hair brush” tree T in Figure 3 and suppose that the
costs of all vertices are zero except for vn+1, which has a cost of unity. Our goal is to
estimate the cost of this tree, which obviously satisfies Cost(T ) = 1. It will become clear
from the following discussion that the budget parameter B is controlling the splitting
capability of SE Algorithm 2. We will consider two cases. In particular we examine the
behavior of the Algorithm 2 with budgets B = 1 and B = 2 respectively.

— If we set B = 1, the SE Algorithm 2 essentially adopts the behavior of Knuth’s
estimator, [Knuth 1975]. Note that in this case the algorithm reaches the vertex
of interest, vn+1, with probability 1/2n and with D = 2n. In all other cases, the
algorithm terminates with some D′ and a zero cost node v̄i, i = 2, . . . , n+1. It follows
that the expectation and variance of the corresponding SE estimator are

E (CSE) =
1

2n
· 2n · 1 +

2n − 1

2n
·D′ · 0 = 1,
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v1

v2 v2

v3 v3

v4

vn−1

vn+1 vn+1

Fig. 3. The hair brush tree.

and

E
(
C2

SE

)
=

1

2n
· (2n · 1)

2
+

2n − 1

2n
· (D′ · 0)

2
= 2n ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
= 2n − 1.

— On the other hand, setting B = 2 will force Algorithm 2 to reach vn+1 with proba-
bility 1. To see this, note that at each tree level (m = 2, . . . , n), Xm = {vm, vm}. The
latter is true because vm has no successors at all and vm has exactly two successors
respectively. Following the execution steps of the Algorithm 2 one can verify that at
the final iteration the cost of the hyper node Xn+1 = {v̄n+1, vn+1} is 0 + 1 = 1, so(

c(Xn+1)

|Xn+1|

)
=

1

2
.

In addition, the final value of D is

D = 2 · 1 · · · 1︸ ︷︷ ︸
n−1 times

= 2.

It follows that the expectation and variance of the corresponding SE estimator are

E (CSE) = 1 · 2 · 1

2
= 1,

and

E
(
C2

SE

)
= 1 ·

(
2 · 1

2

)2

= 1 ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
1− 1 = 0.

By increasing the budget B from 1 to 2 we managed to achieve remarkable variance
reduction, from 2n − 1 to zero. Clearly, we presented an artificial example but it is also
illustrative enough for our purposes. Generally speaking, by increasing the budget we
cannot expect to obtain a zero variance estimator for hard approximation problems,
but we do hope to achieve a significant variance reduction. We next proceed to the
analysis.
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3. ANALYSIS
Recall from Definition 2.3 that for any hypernode v, Tv denotes the forest rooted at
v, and that its cost is Cost(Tv). Let |v|CSE(Tv) be the corresponding estimator, as re-
turned by Algorithm 2. The following theorem shows that this estimator is unbiased.

THEOREM 3.1 (UNBIASED ESTIMATOR). Let v be a hyper node and let H(S(v)) =
{w1, . . . ,wd} be its set of hyper children. Then,

E(CSE (Tv)) =
Cost (Tv)

|v| . (4)

PROOF. By the recursive structure of Algorithm 2, we have

CSE (Tv) =
c(v)

|v| +
|S(v)|
|v| CSE (TW) , (5)

where W is a hyperchild of v selected uniformly at random from H(S(v)). To show (4)
we proceed by induction on the tree height.

— h = 0:

E (CSE (Tv)) = E
(
c(v)

|v| +
|S(v)|
|v| · 0

)
=
c(v)

|v| =

∑
v∈v c(v)

|v| =
Cost(Tv)

|v| .

— Suppose that the proposition is correct for heights 0, . . . , h− 1. Combining this with
(5) we get

E (CSE (Tv)) = E
(
c(v)

|v| +
|S(v)|
|v| CSE (TW)

)

=
c(v)

|v| +
|S(v)|
|v|

1

d

∑
16j6d

E
(
CSE

(
Twj

))
=︸︷︷︸

hypothesis

c(v)

|v| +
|S(v)|
|v|

1

d

∑
16j6d

Cost
(
Twj

)
|wj |

 .

Consider now the following two cases.
(1) |S(v)| 6 B. Hence, H(S(v)) = {w1}, |S(v)| = |w1|, and d = 1, so that

c(v)

|v| +
|S(v)|
|v|

1

d

∑
16j6d

Cost
(
Twj

)
|wj |

 =
c(v)

|v| +
|S(v)|
|v|

Cost(Tw1
)

|w1|

=
c(v) + Cost(Tw1

)

|v| =
Cost(Tv)

|v| .

(2) |S(v)| > B. In this case, there is a set of possible hyper nodes that will be chosen
uniformly at random from H(S(v)). So,

H(S(v)) = {w1, . . . ,wd}, d = |H(S(v))| =
(|S(v)|

B

)
> 1
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and |wj | = B for all j = 1, . . . , d. We continue with

c(v)

|v| +
|S(v)|
|v|

1

d

∑
16j61

Cost
(
Twj

)
|wj |


=
c(v)

|v| +
|S(v)|
|v|

(|S(v)|
B

)−1 ∑
16j6d

Cost
(
Twj

)
B


=︸︷︷︸
(3)

c(v)

|v| +
|S(v)|
|v|

(|S(v)|
B

)−1 ∑
16j6d

∑
w∈wj Cost(Tw)

B


=︸︷︷︸
(∗)

c(v)

|v| +
|S(v)|
|v|

((|S(v)|
B

)−1 (|S(v)|
B

)∑
w∈S(v) Cost(Tw)

|S(v)|

)

=
c(v)

|v| +
|S(v)|
|v|

 1

|S(v)|
∑

w∈S(v)

Cost(Tw)


=︸︷︷︸
(3)

c(v)

|v| +
|S(v)|
|v|

(
Cost

(
TS(v)

)
|S(v)|

)

=
c(v) + Cost

(
TS(v)

)
|v| =

Cost(Tv)

|v| ,

where (∗) follows from Lemma A.1. To see this, substitute

|S(v)| = n, Cost(Twj ) = rj for 1 6 j 6 n, u = B, and d =

(|S(v)|
|v|

)
.

2

If for the original tree T with root v0 we define v0 = {v0}, then the forest Tv0
is

identical to T and, with |v0| = 1, Theorem 3.1 yields the following corollary.

COROLLARY 3.2 (UNBIASED TREE ESTIMATOR). Let T be a tree rooted at v0. Then,
SE returns unbiased estimator for the total tree cost; that is,

E (CSE(Tv0)) = Cost (T ) .

Next we can also derive the recursive expression for the variance.

THEOREM 3.3 (STOCHASTIC ENUMERATION ALGORITHM VARIANCE). Let v be a
hyper node and let H(S(v)) = {w1, . . . ,wd} be its set of hyper children. Then,

Var (CSE (Tv)) =

(
|S(v)|
|v|

)2
d

∑
16j6d

Var
(
CSE

(
Twj

))
(6)

+

(
|S(v)|
|v|

)2
d2

∑
16i<j6d

(
Cost (Twi)

|wi|
− Cost

(
Twj

)
|wj |

)2

︸ ︷︷ ︸
(∗)
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PROOF. Using (5) and the law of total variance, we have

Var (CSE (Tv)) = Var

(
c(v)

|v| +
|S(v)|
|v| CSE (TW)

)
=

( |S(v)|
|v|

)2

Var (CSE (TW))

=

( |S(v)|
|v|

)2 (
E (Var (CSE (TW) |W)) + Var (E (CSE (TW) |W))

)
,

where W is a hyperchild of v selected uniformly at random from H(S(v)). We complete
the proof by noting that

E (Var (CSE (TW) |W)) =
1

d

∑
16j6d

Var
(
CSE

(
Twj

))
and that

Var (E (CSE (TW) |W)) =︸︷︷︸
Theorem 3.1

Var

(
Cost(TW)

|W|

)
=

=︸︷︷︸
(∗)

1

d2

∑
16i6d

∑
16j6d

1

2

(
Cost(Twi)

|wi|
− Cost(Twj )

|wj |

)2

=
1

d2

∑
16i<j6d

(
Cost (Twi)

|wi|
− Cost

(
Twj

)
|wj |

)2

,

where (∗) follows from the expression for variance of a set of d equally likely values
that can be expressed, without directly referring to the mean, in terms of squared
deviations of all points from each other [Zhang et al. 2012]. 2

Remark 3.4. Note that under the settings of Theorem 3.3 and provided that we set
the budget of the SE algorithm to be equal to 1, the variance of SE Algorithm 2 given
in (6) becomes equal to the variance of Knuth’s Algorithm 1 given in (1). This follows
from the fact that in this case, |S(v)| = d and all hyper nodes have the cardinality of 1.

Recall that in Example 2.4 when we set the budget B equal to the maximum of the
number of nodes in each tree level (B = 2), the hyper tree collapses and SE returns
a zero variance estimator. This true more generally, as summarized in the following
corollary.

COROLLARY 3.5 (ZERO VARIANCE ESTIMATOR). Let v be a hyper root of the forest
Tv and let S(m)(v) be the set of nodes at the same tree level m, m = 0, . . . , h. Then, the
SE algorithm with budget

B = max
06m6h

{|S(m)(v)|}

results in a zero variance estimator.

PROOF. The proof is an immediate consequence of Theorem 3.3 combined with the
fact that the resulting hyper tree has a single hyper node v(m) at each tree level 0 6
m 6 h and its corresponding degree is equal to one or zero depending whether it is a
leaf hyper node or not. More formally, let v(0) be the hyper root of the tree and

H
(
S
(
v(0)

))
=
{
v(1)

}
, H

(
S
(
v(1)

))
=
{
v(2)

}
, . . . ,

, . . . , H
(
S
(
v(h−1)

))
=
{
v(h)

}
, H

(
S
(
v(h)

))
= {∅}
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be the sets of hyper children at tree levels 0, . . . , h. Then, from Theorem 3.3,

Var (CSE (Tv(0))) =︸︷︷︸
d=1

(
|S
(
v(0)

)
|

|v(0)|

)2

Var (CSE (Tv(1))) + 0.

Iterating the above equation results in

Var (CSE (Tv(0))) =
∏

06m6h−1

(
|S
(
v(m)

)
|

|v(m)|

)2

Var (CSE (Tv(h))) = 0,

because

Var (CSE (Tv(h))) = 0,

thus completing the proof. 2

Clearly, the most interesting behavior of SE occurs when the number of nodes in the
tree levels is greater than the predefined budget. However, in practice, the first few
levels are usually “fully enumerated” by the SE algorithm. Consider as an example
the tree in Figure 4. Note that for budget B = 3 the last level that still can be fully
enumerated is level m = 3 and the first split of the hyper nodes will occur at level 4. In
this example, the degree of v(0),v(1) and v(2) is 1. The degree of v(3) is(∣∣S(v(3))

∣∣∣∣v(3)
∣∣
)

=

(
7

3

)
respectively. The following lemma summarizes this behavior.

v(0)

v(1)

v(2)

v(3)

Fig. 4. SE full enumeration with budget B = 3.

LEMMA 3.6 (SE FULL ENUMERATION). Let v be a hyper root of the forest Tv and let
S(m)(v) be the set of nodes at the same tree level m, m = 0, . . . , h. Let 1 6 m∗ 6 h− 1 be
the first tree level such that |S(m∗)(v)| > B, where B is the budget of the SE algorithm.
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Suppose that v(0), . . . ,v(m∗−1) are the hyper nodes at levels 0, . . . ,m∗− 1 encountered by
SE. Then,

Var (CSE (Tv(0))) =

( |v(m∗−1)|
|v(0)|

)2

Var (CSE (Tv(m∗−1))) .

PROOF. Similar to the proof of Corollary 3.5, the variance is given by

Var (CSE (Tv(0))) =
∏

06m6m∗−2

( |S(v(m))|
|v(m)|

)2

Var (CSE (Tv(m∗−1))) .

We complete the proof by noting that

|S(v(m))| = |v(m+1)| for m = 0, . . . ,m∗ − 2

and thus ∏
06m6m∗−2

( |S(v(m))|
|v(m)|

)2

=

( |S(v(m∗−2))|
|v(0)|

)2

=

( |v(m∗−1)|
|v(0)|

)2

is a telescopic product. 2

Recall that the coefficient of variation (CV) of a random variable Z is defined as

CV =

√
Var(Z)

E(Z)2
.

Let Z be an unbiased estimator of ` and consider the Monte Carlo algorithm that
outputs the average of N independent copies Z1, . . . , ZN of Z:

̂̀=
1

N

∑
16j6N

Zj .

The CV is an important measure of efficiency of such a Monte Carlo algorithm because
the relative error (RE) of ̂̀ is

RE(̂̀) =

√
Var(Z)

NE(Z)2
=

CV√
N
. (7)

Clearly, the computational effort that is needed to achieve a small RE depends on the
CV, so if the latter is large, the number of experiments required to achieve a reasonable
relative error will also be unmanageable. Having in mind the above discussion, we
would like to obtain the upper bound on the variance of SE.

3.1. Upper bound for the variance
For the rest of this section our setting is as follows. Let v be a hyper root of the forest
Tv and let S(m)(v) be the set of nodes at the same tree level m, m = 0, . . . , h. The set of
hyper nodes at level m is defined by H(S(m)(v)). Let

H(S(m)(v)) = {w(m)
1 , . . . ,w

(m)
d }.

Consider a random variable
Cost(TW(m))

|W(m)| ,
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where W(m) is taken uniformly from all hypernodes at level m. Define:

γ(m) = CV2

(
Cost(TW(m))

|W(m)|

)
=

Var
(

Cost(T
W(m) )

|W(m)|

)
(
E
(

Cost(T
W(m) )

|W(m)|

))2 .
LEMMA 3.7 (UPPER BOUND OF (∗) IN (6)). For a forest rooted at v and for any level

m = 0, . . . , h− 1, it holds that(
|S(v(m+1))|
|v(m+1)|

)2
d2

∑
16i<j6d

Cost
(
T
w

(m)
i

)
|w(m)

i |
−

Cost
(
T
w

(m)
j

)
|w(m)

j |


2

6 γ(m)

[
Cost (Tv)

|v|

]2
.

PROOF.(
|S(v(m+1))|
|v(m+1)|

)2
d2

∑
16i<j6d

Cost
(
T
w

(m)
i

)
|w(m)

i |
−

Cost
(
T
w

(m)
j

)
|w(m)

j |


2

=

( |S(v(m+1))|
|v(m+1)|

)2

Var

(
Cost(TW(m))

|W(m)|

)
= γ(m)

( |S(v(m+1))|
|v(m+1)|

)2(
E
(

Cost(TW(m))

|W(m)|

))2

= γ(m)

( |S(v(m+1))|
|v(m+1)|

)2
1

d

∑
16j6d

∑
w∈w(m)

j
Cost(Tw)

|w(m)
j |

2

6︸︷︷︸
Lemma A.1

γ(m)

( |S(v(m+1))|
|v(m+1)|

)2
(∑

w∈S(v(m+1)) Cost(Tw)

|S(v(m+1))|

)2

6 γ(m)

 1

|v(m+1)|
∑

w∈S(v(m+1))

Cost(Tw)

2

6 γ(m)

[
Cost (Tv)

|v|

]2
.

2

With the above lemma, we are ready to prove the bound for the variance.

LEMMA 3.8 (UPPER BOUND FOR VARIANCE IN (6)). Let Tv be a forest of height h
and let Ph be the power set of {0, . . . , h} excluding the empty set. Then,

Var (CSE (Tv)) 6

 ∑
J∈Ph−1

∏
j∈J

γ(j)

[Cost (Tv)

|v|

]2
.

PROOF. The proof is by induction on the forest height combined with the recursive
variance formula (6). For h = 1,

Var (CSE (Tv)) = 0 +

(
|S(v)|
|v|

)2
d2

∑
16i<j6d

Cost
(
T
w

(0)
i

)
|w(0)

i |
−

Cost
(
T
w

(0)
j

)
|w(0)

j |


2

6︸︷︷︸
Lemma 3.7

γ(0)
[

Cost (Tv)

|v|

]2
=

∑
J∈P0

∏
j∈J

γ(j)

[Cost (Tv)

|v|

]2
.
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Suppose that the lemma is true for heights less than or equal to h− 1 and let us ex-
amine the estimator variance at height h. Then, by combining the induction hypothesis
and Lemma 3.7, we have

Var (CSE (Tv))

6

(
|S(v)|
|v|

)2
d

 ∑
16j6d

 ∑
J∈Ph−2

∏
j∈J

γ(j)


Cost

(
T
w

(h−1)
j

)
|w(h−1)

j |


2+ γ(h−1)

[
Cost (Tv)

|v|

]2

6

( |S(v)|
|v|

)2
 ∑
J∈Ph−2

∏
j∈J

γ(j)


 ∑

16j6d

Cost
(
T
w

(h−1)
j

)
|w(h−1)

j |


2

1

d

+ γ(h−1)
[

Cost (Tv)

|v|

]2

6

( |S(v)|
|v|

)2
 ∑
J∈Ph−2

∏
j∈J

γ(j)

 (γ(h−1) + 1)

 ∑
16j6d

Cost
(
T
w

(h−1)
j

)
|w(h−1)

j |




2

+ γ(h−1)
[

Cost (Tv)

|v|

]2
6

( |S(v)|
|v|

)2
 ∑
J∈Ph−2

∏
j∈J

γ(j)

 (γ(h−1) + 1)

(
d
∑
w∈S(v) Cost(Tw)

|S(v)|

)2

+ γ(h−1)
[

Cost (Tv)

|v|

]2
6

 ∑
J∈Ph−2

∏
j∈J

γ(j)

 (γ(h−1) + 1)

[
Cost (Tv)

|v|

]2

+ γ(h−1)
[

Cost (Tv)

|v|

]2
6

 ∑
J∈Ph−2

∏
j∈J

γ(j)

 (γ(h−1) + 1) + γ(h−1)

[Cost (Tv)

|v|

]2

6

 ∑
J∈Ph−1

∏
j∈J

γ(j)

[Cost (Tv)

|v|

]2
.

2

As an almost immediate consequence of Lemma 3.8 the following corollaries can be
derived.

COROLLARY 3.9 (FIRST UPPER BOUND FOR VARIANCE IN (6)). Let

γ = max
06m6h−1

{
γ(m)

}
.

Then, the upper bound on the variance is given by

Var (CSE (Tv)) 6 ((γ + 1)h − 1)

[
Cost (Tv)

|v|

]2
.
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PROOF. The proof is by straightforward application of the binomial theorem (BT).
That is, ∑

J∈Ph−1

∏
j∈J

γ(j) 6
∑

J∈Ph−1

γ|J| =
∑

06m6h−1

(
h− 1

m

)
γm − 1 =︸︷︷︸

(BT)

(γ + 1)h − 1.

2

Clearly, γ is generally not available, but if we know something about the subtree costs,
the following bound can be derived similarly to Knuth [1975].

COROLLARY 3.10 (SECOND UPPER BOUND FOR VARIANCE IN (6)). Let

γ = max
06m6h−1

{
γ(m)

}
and suppose that γ is maximized at level m∗. Suppose without loss of generality that

H(S(m∗)(v)) = {w1, . . . ,wd}
and there exists constant a such that

Cost (Tw1
)

|w1|
6

Cost (Tw2
)

|w2|
6 · · · 6 Cost (Twd)

|wd|
6 a

Cost (Tw1
)

|w1|
.

Then, the variance of SE estimator satisfies

Var (CSE (Tv)) 6 (βh − 1)

[
Cost (Tv)

|v|

]2
,

where β =
(
a2+2a+1

4a

)
.

PROOF. Before we begin, let us state a technical result from Lemma A.2: Let
r1, . . . , rn be non–negative scalars and suppose without loss of generality that r1 6
r2 6 · · · 6 rn 6 a r1 for a positive scalar a > 1. Then,

∑
16j6n

r2j
1
n

6

(
a2 + 2a+ 1

4a

) ∑
16j6n

rj

2

. (8)

Using the definition of γ we continue with

γ = CV2

(
Cost(TW)

|W|

)
=

Var
(

Cost(TW)
|W|

)
(
E
(

Cost(TW)
|W|

))2 =
E
(

Cost(TW)
|W|

)2
(
E
(

Cost(TW)
|W|

))2 − 1

=

∑
16j6d

(
Cost(Twj

)

|wj |

)2
1
d(

1
d

∑
16j6d

Cost(Twj
)

|wj |

)2 − 1 =

∑
16j6d

(
Cost(Twj

)

|wj |

)2

d−1(∑
16j6d

Cost(Twj
)

|wj |

)2 − 1 6︸︷︷︸
(8)

β − 1.

Combining this with Corollary 3.9, we complete the proof with

Var (CSE (Tv)) 6 ((γ + 1)h − 1)

[
Cost (Tv)

|v|

]2
6︸︷︷︸

γ6β−1

(βh − 1)

[
Cost (Tv)

|v|

]2
.

2
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As the direct consequence of Theorem 3.1 and Corollaries 3.9 and 3.10 we can con-
clude that the CV of the SE algorithm, when applied to the tree Tv0 , is

CVSE =

√
Var(CSE)

E(CSE)2
6

√
((γ + 1)h − 1) [Cost (Tv0)]

2

[Cost (Tv0)]
2 =

√
(γ + 1)h − 1 6

√
βh − 1.

Similarly to the bound in [Knuth 1975], it means that if β is not too large (and as a
consequence, βh − 1 has manageable size too), SE will be able to deliver a sufficiently
acceptable estimator (similar to Knuth’s Algorithm 1 [Knuth 1975]). Next, we consider
a special case of a random tree counting problem; that is, a counting the number of
vertices in a random tree.

4. RANDOM TREES
In this section we will work with families of random trees.

Definition 4.1 (Family of random trees). Consider a probability vector p = (p0, . . .,
pk) that corresponds to the probability of a vertex to have 0, . . . , k successors respec-
tively. Define a family of random trees Fhp as all possible trees of hight at most h that
are generated using p up to the level h. (Note that if p0 > 0, there exists a non–zero
probability of extinction before generation h, and therefore the tree can have a hight
that is smaller than h.)

The family Fhp is fully characterized by the probability vector p and the parameter
h. Moreover, the tree generation corresponds to a branching process [Asmussen and
Hering 1983]. Let T = (V, E) be a random tree from Fhp . By assigning the cost c(v) = 1
for all v ∈ V, the cost of the tree — Cost(T ) is equal to |V|. Our objective is to analyse
the behavior of Knuth’s and SE’s estimators under this setting. In particular, we show
the following.

— In Lemma 4.3 and Corollary 4.4 we develop the expected variance and the lower
bound of the Knuth’s Algorithm 1.

— Using Lemmas 4.6, 4.8 and 4.9 we obtain an upper bound for the variance of the SE
Algorithm 2. This result is summarized in Theorem 4.5.

— Combining the results of Corollary 4.4 and Theorem 4.5, we get the lower bound for
the variance reduction introduced by the SE as compared to the Knuth’s estimator.
The latter is summarized in Corollary 4.10.

Consider now a random tree rooted at v0 and let Rm be the total number of children
(population size) at level (generation) m. Define

µ = E(R1) =
∑

06j6k

jpj

and

σ2 = Var(R1) =

 ∑
06j6k

j2pj

− µ2.

The tree counting problem — (that is, counting the overall number of vertices in the
tree) becomes hard when the number of nodes in a tree is large, so we are naturally
interested in the super-critical branching case (µ > 1). Well-known results on the dis-
tribution of such trees are available from the general theory of the branching processes.
Denote by Mm the total progeny at generation m, that is Mn = 1+R1 + · · ·+Rm. Then,
from [Pakes 1971] we have

E(Rm) = µm,
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νm = E(Mm) = E

1 +
∑

16j6m

Rt

 =
1− µm+1

1− µ , (9)

Var(Rm) = σ2 1− µm
1− µ ,

and

ζ2m = Var(Mm) =
σ2

(1− µ)2

[
1− µ2m+1

1− µ − (2m+ 1)µm
]
. (10)

Before proceeding to the performance analysis of the basic Knuth’s and the SE’s esti-
mators, we will require the following technical lemma, the proof of which is given in
appendix.

LEMMA 4.2 (SUM OF SQUARED DIFFERENCES). Let n ∈ N, and Z1, . . . , Zn be inde-
pendent and identically distributed random variables with expectation and variance
equal to µ and σ2 respectively. Then,

E

 ∑
16i<j6n

(Zi − Zj)2
 = n(n− 1)σ2. (11)

Also for m ∈ N, let Z(i)
1 , . . . , Z

(i)
m , i = 1, . . . ,

(
n
m

)
be the unique subsets of {Z1, . . . , Zn},

and define Ui = 1
m

∑
16j6m Z

(i)
j . Then,

E

 ∑
16i<j6(nm)

(Ui − Uj)2
 6

(
n

m

)((
n

m

)
− 1

)
σ2

m
. (12)

We next consider the expected variances of Knuth’s and the SE’s estimators under
the random tree model. It is important to note that in this settings and for a random
tree T ∈ Fhp

Var (C (T ) | T ) and Var (CSE (T ) | T )

are random variables.

LEMMA 4.3 (KNUTH’S EXPECTED VARIANCE). Let T (h) be a random tree of height
h. Then,

E
(

Var
(
C
(
T (h)

) ∣∣∣ T (h)
))

= (σ2 + µ2)E
(

Var
(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

(13)

+ (σ2 + µ2 − µ)ζ2h−1.

PROOF. Suppose that the random tree T (h) is rooted at node v and let S(v) =
{w1, . . . , wD} be the set of its children. Recall that we are working under the ran-
dom tree model and each vertex can be a parent of 0, . . . , k children with probability
p = (p0, . . . , pk) respectively. From the variance formula (1) we have

E
(

Var
(
C
(
T (h)

) ∣∣∣ T (h)
))

= E (Var (C (Tv) | Tv)) = (14)

= E

D ∑
16j6D

Var
(
C
(
Twj

) ∣∣ Twj)+
∑

16i<j6D

(
Cost (Twi)− Cost

(
Twj

))2
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=
∑

06d6k

E

D2 1

D

∑
16j6D

Var
(
C
(
Twj

) ∣∣ Twj)
∣∣∣∣∣∣ D = d

P(D = d)

︸ ︷︷ ︸
Part (a)

+
∑

06d6k

E

 ∑
16i<j6D

(
Cost (Twi)− Cost

(
Twj

))2 ∣∣∣∣∣∣ D = d

P(D = d)

︸ ︷︷ ︸
Part (b)

.

Having in mind that D, the degree of v, is a random variable such that E(D) = µ and
Var(D) = σ2, it follows that E(D2) = σ2 + µ2, and by linearity of expectation we have
the following.

— Part (a):

∑
06d6k

E

D2 1

D

∑
16j6D

Var
(
C
(
Twj

) ∣∣ Twj)
∣∣∣∣∣∣ D = d

P(D = d) (15)

=︸︷︷︸
(∗)

∑
06d6k

E
(
D2Var (C (Tw1

) | Tw1
)
∣∣ D = d

)
P(D = d)

= E
(
D2
)
E (Var (C (Tw1

) | Tw1
)) =

(
σ2 + µ2

)
E
(

Var
(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

,

where “(∗)” follows from the fact that w1, . . . , wd are roots of independent and identi-
cally distributed random trees, and as a consequence, the random variables

Var
(
C
(
Twj

) ∣∣ Twj), j = 1, . . . , d

have the same distribution for any d ∈ N, so,

E

 1

D

∑
16j6D

Var
(
C
(
Twj

) ∣∣ Twj)


=
∑

06d6k

E

 1

D

∑
16j6D

Var
(
C
(
Twj

) ∣∣ Twj)
∣∣∣∣∣∣ D = d

P(D = d)

=
∑

06d6k

E (Var (C (Tw1) | Tw1) | D = d)P(D = d) = E (Var (C (Tw1) | Tw1)) .

— For Part (b) we continue with

∑
06d6k

E

 ∑
16i<j6D

(
Cost (Twi)− Cost

(
Twj

))2 ∣∣∣∣∣∣ D = d

P(D = d) (16)

=︸︷︷︸
(∗∗)

∑
06d6k

E
(
D(D − 1)ζ2h−1

∣∣ D = d
)
P(D = d)

= E (D(D − 1)) ζ2h−1 =
(
σ2 + µ2 − µ

)
ζ2h−1,

where (∗∗) follows from (10) and from the fact that Cost (Tw1
) , . . . ,Cost (Twd) are inde-

pendent and identically distributed random variables with expectation and variance
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equal to νh−1 and ζ2h−1 respectively. So, by Lemma 4.2 (11),

E

 ∑
16i<j6d

(
Cost (Twi)− Cost

(
Twj

))2 = d(d− 1)ζ2h−1.

We complete the proof of the lemma by combining (18), (15), and (16). 2

COROLLARY 4.4 (LOWER BOUND ON KNUTH’S EXPECTED VARIANCE). Under the
settings of the random tree model,

E
(

Var
(
C
(
T (h)

) ∣∣∣ T (h)
))

>
(
σ2 + µ2 − µ

) 1−
(
σ2 + µ2

)h
1− (σ2 + µ2)

. (17)

PROOF.

E
(

Var
(
C
(
T (h)

) ∣∣∣ T (h)
))

= (σ2 + µ2)E
(

Var
(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

+ (σ2 + µ2 − µ)ζ2h−1

>︸︷︷︸
ζ2h>1

(
σ2 + µ2

)
E
(

Var
(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

+
(
σ2 + µ2 − µ

)
1

=︸︷︷︸
(∗)

(
σ2 + µ2 − µ

) 1−
(
σ2 + µ2

)h
1− (σ2 + µ2)

,

where (∗) follows from the fact that the recursion of type
F (n) = αF (n− 1) + β, F (0) = 0,

has the solution of the form

F (n) = β
1− αn
1− α .

(See Lemma A.3). 2

Next, we proceed to the analysis of E
(
Var

(
CSE

(
T (h)

) ∣∣ T (h)
))

.

THEOREM 4.5 (UPPER BOUND ON THE SE VARIANCE UNDER THE RANDOM TREE MODEL).
Let T (h) be a random tree of height h. Let

B′ = max



hk2 ln

(
2h(σ2 + µ2) σ2µ

(µ−1)3

)
2(µ− 1)2

 ,
⌈
hσ2

µ2

⌉ ,

and let m∗ be the first level of T (h) for which the number of nodes is greater or equal to
B′; that is

m∗ = min
m

{
m : S(m) > B′

}
.

Then, for the budget B that satisfies

B = |S(m∗)| 6 kB′,

E
(

Var
(
CSE

(
T (h)

) ∣∣∣ T (h)
))

6 B2heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.
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Similar to Lemma 4.3, the idea is to upper–bound the variance formula (1). However,
in the SE analysis, the cardinality of hyper nodes during the SE algorithm execution
is playing an important role and must be taken into consideration. Our objective is
to show that starting from some budget size, the hyper node cardinality will not vary
much, which will cause a significant variance minimization. The proof is completed in
few steps using Lemmas 4.6, 4.8 and 4.9 and Corollary 4.10.

LEMMA 4.6 (RANDOM FOREST VARIANCE - PART 1). Consider a random forest
T

(h)
v of height h where v is the root hyper node. Let S(v) = {w1, . . . ,wD} be the set

of v’s children. Then,

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 E

(( |S(v)|
|v|

)2

Var
(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

))

+ E

(( |S(v)|
|v|

)2
)

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h−1
.

Remark 4.7. Note that T (h−1)
wi , i = 1, . . . , D are forests and that w1, . . . ,wD are just

hyper nodes that contains roots of random trees so with out loss of generality we write
w1 in the result of the above lemma.

PROOF. Recall that we are working under the random tree model and each vertex
v ∈ v can be a parent of 0, . . . , k children with probability p = (p0, . . . , pk) respectively.
From the variance formula (6) we have

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
))

= E (Var (CSE (Tv) | Tv)) = (18)

= E


(
|S(v)|
|v|

)2
D

∑
16j6D

Var
(
CSE

(
Twj

) ∣∣ Twj)


︸ ︷︷ ︸
Part (a)

+ E


(
|S(v)|
|v|

)2
D2

∑
16i<j6D

(
Cost (Twi)

|wi|
− Cost

(
Twj

)
|wj |

)2


︸ ︷︷ ︸
Part (b)

.

— Part (a):
Note that w1, . . . ,wD are roots of identically distributed random forests of height
h− 1 and consider the random variables

Var
(
CSE

(
Twj

) ∣∣ Twj), j = 1, . . . , D.

Despite the fact that those variables are clearly dependent (because wi and wj , 1 6
i < j 6 D can share a subset of nodes), they still have the same expected value, so,

E

( |S(v)|
|v|

)2
1

D

∑
16j6D

Var
(
CSE

(
Twj

) ∣∣ Twj)
 (19)

=
∑

16d6|v|k

E


(
|S(v)|
|v|

)2
D

∑
16j6D

Var
(
CSE

(
Twj

) ∣∣ Twj)
∣∣∣∣∣∣∣ D = d

P(D = d)

Journal of the ACM, Vol. 0, No. 0, Article , Publication date: 0.



:22 Radislav Vaisman and Dirk P. Kroese

=
∑

16d6|v|k

E

(( |S(v)|
|v|

)2

Var (CSE (Tw1) | Tw1)

∣∣∣∣∣ D = d

)
P(D = d)

= E

(( |S(v)|
|v|

)2

Var
(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

))
.

— Part (b):

E


(
|S(v)|
|v|

)2
D2

∑
16i<j6D

(
Cost (Twi)

|wi|
− Cost

(
Twj

)
|wj |

)2
 (20)

=
∑

06d6|v|k

E

(
|S(v)|
|v|

)2
D2

∑
16i<j6D

(
Cost (Twi)

|wi|
− Cost

(
Twj

)
|wj |

)2
∣∣∣∣∣∣∣ D = d


P(D = d)

=
∑

06d6|v|k


(
|S(v)|
|v|

)2
D2

E

 ∑
16i<j6D

(
Cost (Twi)

|wi|
− Cost

(
Twj

)
|wj |

)2
∣∣∣∣∣∣ D = d


P(D = d)

6︸︷︷︸
Lemma 4.2 (12)

∑
06d6|v|k


(
|S(v)|
|v|

)2
D2

E
(
D(D − 1)

ζ2h−1
|w1|

∣∣∣∣ D = d

)P(D = d)

=
∑

06d6|v|k

[
E

(( |S(v)|
|v|

)2
D(D − 1)

D2

ζ2h−1
|w1|

∣∣∣∣∣ D = d

)]
P(D = d)

6︸︷︷︸
|w1|>1

E

(( |S(v)|
|v|

)2 ζ2h−1
1

)
6︸︷︷︸
(10)

E

(( |S(v)|
|v|

)2
)

σ2

(µ− 1)2

(
1− µ2h−1

µ− 1
− (2h− 1)µh−1

)

6 E

(( |S(v)|
|v|

)2
)

σ2

(µ− 1)3
µ2h−1 6 E

(( |S(v)|
|v|

)2
)

σ2µ

(µ− 1)3
(µ2)h−1

6︸︷︷︸
σ2

B >0

E

(( |S(v)|
|v|

)2
)

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h−1
.

We complete the proof of the lemma by combining (18), (19), and (20). 2

We are interested in having all the tree hyper nodes to retain cardinality B. This will
allow us to control the value of the (σ2/B+µ2) term and as a consequence to introduce
a significant variance reduction as will be shown in the following lemmas. In Lemma
4.8 we assume that the root has the desired cardinality and consider the following
events:

A = {|S(v)| > B}, A = {|S(v)| < B}.
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LEMMA 4.8 (RANDOM FOREST VARIANCE - PART 2). Consider a random forest
T

(h)
v of height h where v is the root hyper node such that |v| = B. Then,

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h ∣∣∣∣∣ A
)
P(A)

+ h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A).

PROOF. It is not hard to prove by induction that recursive equations of the type

F (n) = αF (n− 1) + βαn + γ, F (0) = 0, α > 1, γ > 0, (21)

are bounded by

F (n) 6 αnn(β + γ). (22)

See Lemma A.3 for a proof. In addition, under the random tree model,

E
( |S(v)|
|v|

)2

= Var

( |S(v)|
|v|

)
+ µ2 =

σ2

|v| + µ2.

See Lemma A.4 for the proof. Having in mind that by the law of total expectation

E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) + E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) =

σ2

B
+ µ2,

we can conclude that

E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) 6

σ2

B
+ µ2, E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) 6 σ2 + µ2.

We complete the proof by applying the law of total expectation on the result of
Lemma 4.6.

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h ∣∣∣∣∣ A
)
P(A)

+ E
((
σ2 + µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3
(
σ2 + µ2

)h ∣∣∣∣ A)P(A)

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h ∣∣∣∣∣ A
)
P(A)

+ h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A).

2

LEMMA 4.9 (RANDOM FOREST VARIANCE - PART 3). Consider a random forest
T

(h)
v of height h where v is the root hyper node such that |v| = B. Then, for the budget
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B that satisfies

B > max



hk2 ln

(
2h(σ2 + µ2) σ2µ

(µ−1)3

)
2(µ− 1)2

 ,
⌈
hσ2

µ2

⌉ ,

it holds that

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

PROOF. Recall that P(A) is the probability that S(|v|) < B. Hoeffdings
inequality yields

P(A) 6 2e−
2|v|(µ−1)2

k2 ,

See Lemma A.5 for the proof. By requiring

h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A) 6︸︷︷︸

|v|=B

h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
2e−

2B(µ−1)2

k2 6 1, (23)

we arrive at

B >


hk2 ln

(
2h(σ2 + µ2) σ2µ

(µ−1)3

)
2(µ− 1)2

 .
With this budget and from Lemma 4.8 we have

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h ∣∣∣∣∣ A
)
P(A)

+ h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A)︸ ︷︷ ︸

61 by (23)

6

6︸︷︷︸
P(A)61

E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w

) ∣∣∣ T (h−1)
w

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h)
+ 1,

where |w| = B. We complete the proof by applying the recursive bound (21) and (22)
on the above equation and arrive at

E
(

Var
(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 h

(
σ2

B
+ µ2

)h(
σ2µ

(µ− 1)3
+ 1

)
6︸︷︷︸

B>
⌈
hσ2

µ2

⌉hµ
2h

(
1

h
+ 1

)h(
σ2µ

(µ− 1)3
+ 1

)
6 heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

2

We are ready to complete the proof of Theorem 4.5.
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PROOF. The proof is almost an immediate consequence of Lemmas 3.6 and 4.9. Let v
be the hyper node at level m and note that by definition of the Lemma, |v| = |S(m∗)|2 =
B2. Then, the variance of SE Algorithm 2 satisfies:

E
(

Var
(
CSE

(
T (h)

) ∣∣∣ T (h)
))

6︸︷︷︸
Lemma 3.6

|v|2E
(

Var
(
CSE

(
T (h−m∗)
v

) ∣∣∣ T (h−m∗)
v

))
6︸︷︷︸

Lemma 4.9

B2heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

Having in mind that each vertex has at most k successors and combining this with
the fact that |S(m∗−1)| < B′ we conclude that |S(m∗)| 6 kB′, thus completing the proof
of Theorem 4.5.

2

The following corollary reveals the true strength of the SE Algorithm 2.

COROLLARY 4.10 (AVERAGE VARIANCE OF SE AND KNUTH). For the problem of
counting the number of nodes in a random tree T ∈ Fhp and provided that the budget B
is chosen according to the conditions of Theorem 4.5, the SE Algorithm 2 introduces an
expected variance reduction that is greater or equal to

1

P(h;B, k, σ, µ)

((
1 +

σ2

µ2

)h
− 1

µ2h

)
,

where P(h;B, σ, µ)) is a polynomial function of h,B, k, σ and µ.

Remark 4.11. Note that if
(
1 + σ2/µ2

)h is an exponentially fast growing function,
the variance reduction becomes significant. This happens for example when µ and σ2

do not depend on the parameter h.

PROOF. Combining Corollary 4.4 and Theorem 4.5 results in

E
(
Var

(
C
(
T (h)

) ∣∣ T (h)
))

E
(
Var

(
CSE

(
T (h)

) ∣∣ T (h)
)) >

(
σ2 + µ2 − µ

) 1−(σ2+µ2)
h

1−(σ2+µ2)

B2heµ2h
(

σ2µ
(µ−1)3 + 1

)
=

1
(σ2+µ2−µ)/(1−σ2+µ2)

B2he
(

σ2µ

(µ−1)3
+1
)︸ ︷︷ ︸

(P(h;B,k,σ,µ)))

·
(
σ2 + µ2

)h − 1

µ2h
=

1

P(h;B, k, σ, µ)


(
µ2
(

1 + σ2

µ2

))h
µ2h

− 1

µ2h



=
1

P(h;B, k, σ, µ)

((
1 +

σ2

µ2

)h
− 1

µ2h

)
.

2

4.1. FPRAS for special families of trees
Following Rasmussen [1997], we first formalize the notation of “computationally ef-
ficient approximation algorithm”. A randomized approximation scheme for Cost(T ) is
a non-deterministic algorithm which, when given an input tree T and a real number
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ε ∈ (0, 1), outputs a random variable K such that

P ((1− ε)Cost(T ) 6 K 6 (1 + ε)Cost(T )) >
3

4
.

It was shown in [Jerrum et al. 1986] that the success probability 3/4 can be boosted
to any 1− δ by running the algorithm O(log(δ−1)) times and taking the median of the
obtained results. Such a scheme is said to be fully polynomial if its execution time is
bounded by some polynomial in the tree height (that is assumed to be polynomial in
our case) and ε−1. If this condition holds, such algorithm is a fully polynomial random-
ized approximation scheme or FPRAS. A FPRAS is considered a very good algorithm,
especially when a polynomial time exact algorithm does not exists (unless P = NP ), so,
FPRAS for such problems is essentially the best approximation one can hope to achieve
[Jerrum et al. 2004]. We will construct a FPRAS from the unbiased SE estimator K for
Cost(T ) — the number of vertices in T .

Those settings allow us to run a number of independent copies of the algorithm
on the same input, and output the average of the results. Actually, for any random
variable U with expectation µ′ and variance σ′2, Chebyshev’s inequality yield

P (|U − µ′| > rσ′) 6
1

r2
.

Combining this with the independence of repetitive calculations of the random variable
K and provided that

Cost(T ) = E(K) = µ′ and Var(K) = σ′2,

one can show that for a random variable K defined by

K =
1

N

N∑
i=1

Ki,

we have

P
(
|K − µ′| > εµ′

)
6

Var(K)

ε2µ′2
=

σ′2

N

ε2µ′2
.

So, if we demand the final expression to be less than 1/4, one can immediately conclude
that the use of N samples such that

σ′2

N

ε2µ′2
6

1

4
⇒ N >

4

ε2
σ′2

µ′2

will satisfy

P
(
|K − µ′| > εµ′

)
6

1

4
⇒ P

(
|K − µ′| 6 εµ′

)
>

3

4
.

Moreover, from this, it readily follows that the critical factor of the algorithm is the
variance of the unbiased estimator divided by the square of its expectation — the CV2.
We conclude the above discussion with an important observation. If the coefficient of
variation is bounded above by a polynomial in the size of the tree height, then we have
constructed a FPRAS.

As it was already discussed in Section 1, we probably cannot hope to develop FPRAS
for the general tree counting problem, because the latter is considered to be a very
hard task. Still, we show that the SE algorithm is efficient for counting the number of
vertices in random trees. More specifically, following the work of Rasmussen [1997], we
show that for almost all trees that were generated under the random tree model and
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provided that the number of vertices is not much smaller than their expected number
(that is given by equation (9)), one can construct FPRAS.

THEOREM 4.12 (ALMOST SURE FPRAS). Let Fhp′ be a family of random trees such
that for T ∈ Fhp′

lim
h→∞

P
(

Cost(T ) <
1

P(h)
νh

)
= 0, (24)

where P(h) > 0 is some polynomial function in h and νh = 1−µh+1

1−µ is the expected
number of nodes. In other words, for most instances, (almost surely), the actual number
of nodes is not much smaller than the expectation. Then, under the above condition,
and provided that

µ > 1 + ε for any ε > 0, (see Remark 4.13), (25)

the SE algorithm is FPRAS for most of the instances in T ∈ Fhp′ , that is,

CV2 =
Var (CSE(T ) | T )

(E (CSE(T ) | T ))
2

is bounded by a polynomial in h with high probability.

Remark 4.13. The condition (25) is technical in sense that we demand µ to be not
very close to 1.

PROOF. Let T ∈ T ∈ Fhp′ be a random tree that was generated by the corresponding
branching process. Recall that both Var (CSE(T ) | T ) and E (CSE(T ) | T ) are random
variable, so, by the Markov inequality,

P (Var (CSE(T ) | T ) > a) 6
E (Var (CSE(T ) | T ))

a
.

By setting

a = hE (Var (CSE(T ) | T )) ,

we get

P
(

Var (CSE(T ) | T ) > hE (Var (CSE(T ) | T ))
)
6

1

h
→ 0 as h→∞. (26)

Note also that by Theorem 3.1, for any tree T ,

E (CSE(T ) | T ) = Cost(T ),

so, under the condition (24),

P
(
E (CSE (T ) | T ) = Cost(T ) <

1

P(h)

1− µh+1

1− µ

)
→ 0 as h→∞. (27)

And now, by combining (26) and (27), we conclude that for T ∈ Fhp′ and as h→∞,

P

 Var (CSE(T ) | T )

(E (CSE(T ) | T ))
2 =

Var (CSE(T ) | T )

(Cost(T ))
2 6

hE (Var (CSE(T ) | T )))(
1

P(h)E (Cost(T ))
)2

6︸︷︷︸
Corollary 4.10

h(P(h))2
B2he

(
σ2µ+ (µ− 1)3

)
µ2(µ− 1)

→ 1 as h→∞.
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We complete the proof by noting that under (25),

h(P(h))2
B2he

(
σ2µ+ (µ− 1)3

)
µ2(µ− 1)

6︸︷︷︸
Remark 4.13

hε(P(h))2
B2he

(
σ2µ+ (µ− 1)3

)
µ2

is bounded by a polynomial, while Theorem 4.5 provides the upper bound on B2; that
is

B2 6 [k (B′)]
2
6

k
max



hk2 ln

(
2h(σ2 + µ2) σ2µ

(µ−1)3

)
2(µ− 1)2

 ,
⌈
hσ2

µ2

⌉
2

.

As a consequence,

Var (CSE(T ) | T )

(E (CSE(T )))
2

is bounded by a polynomial in h for most of random tree instances.

2

We complete this section by showing a specific family of trees T ∈ Fhp∗ for which SE is
FPRAS for counting the number of nodes in Fhp∗ .

Let Fhp∗ be a family of random trees defined by a fixed height h ∈ N and probability
vector

p∗ =
(
p0, . . . , phdlog(h)e−1, phdlog(h)e, . . . , phdlog(h)e+h

)
,

where

pi = 0 for i = 0, . . . , hdlog(h)e − 1 and pi =
1

h
for i = hdlog(h)e, . . . , hdlog(h)e+ h.

In other words, each vertex can have

a = hdlog(h)e, . . . , hdlog(h)e+ h = b

successors with equal probability 1/h. Suppose that such trees are generated up to
height h. Note that this is always possible since p0 = 0. Under the above settings, we
have a discrete uniform distribution between a and b over h values. Such a distribution
satisfies

µ =
a+ b

2
=

2hdlog(h)e+ h

2
and σ2 =

h2 − 1

12
, (28)

and as a consequence,

σ2

µ2
→ (h2 − 1)/12

(2hdlog(h)e+ h)2/22
→ 1− 1/h2

3
(

4dlog2(h)e+ 4dlog(h)e
h + 1

) → (29)

→ 1

12dlog2(h)e
, h→∞.

THEOREM 4.14 (FPRAS). For the random tree family Fhp∗ the following holds.

(1) Knuth’s estimator average variance is growing at an exponential rate compared to
the SE average variance.

(2) For most of the trees in Fhp∗ , SE is FPRAS.
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PROOF.

(1) Follows immediately from Corollary 4.10 and the fact that(
1 +

σ2

µ2

)h
→
(

1 +
1

12dlog2(h)e

)h
>︸︷︷︸

log(1+x)> 2x
2+x

e
h

2
12dlog2(h)e

2+ 1
12dlog2(h)e

= e
2h

12dlog2(h)e
12dlog2(h)e

24dlog2(h)e+2 = e
h

12dlog2(h)e+1 , h →∞.
(2) To complete the second part of this theorem, we will show that

P
(

Cost(T ) <
1

P(h)

1− µh+1

1− µ

)
→ 0, h →∞.

thus satisfying the condition of Theorem 4.12. From (9) and (10), we have

lim
h→∞

ζ2h
ν2h

= lim
h→∞

σ2

(1−µ)2

[
1−µ2h+1

1−µ − (2h+ 1)µh
]

(
1−µh+1

1−µ

)2 =
σ2

µ2
=︸︷︷︸

(29)

1

12dlog2(h)e
.

And now, by choosing

P(h) =

√
dlog(h)e − 1√
dlog(h)e

,

we arrive at

lim
h→∞

P
(

Cost(T ) <
1

P(h)

1− µh+1

1− µ

)
= lim
h→∞

P

(
Cost(T ) <

(
1− 1√

dlog(h)e

)
νh

)

6︸︷︷︸
(∗)

ζ2h

ζ2h +
ν2
h

dlog(h)e

=
ζ2h/ν

2
h

ζ2h/ν
2
h + 1

dlog(h)e

=

1
12dlog2(h)e
1

12dlog2(h)e + 1
dlog(h)e

=
1

1 + 12dlog(h)e = 0,

where (∗) follows from the one–sided Chebyshev’s bound

P(X < νh − a) 6
ζ2h

ζ2h + a2
.

We complete the proof by noting that (25) holds, because

lim
h→∞

1 +
1

P(h)
= lim
h→∞

2dlog(h)e − 1

dlog(h)e − 1
= 2

< lim
h→∞

µ = lim
h→∞

2hdlog(h)e+ h

2
= hdlog(h)e+ h/2.

2

5. NUMERICAL RESULTS
In this section we present some numerical results obtained by the SE Algorithm 2. The
results were obtained using an Intel Core i7 machine with 16 GB of RAM. The tables
should be interpreted as follows.
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— Run: independent runs of the algorithm.
— Ĉ, ĈSE: estimators returned by Knuth’s Algorithm 1 and SE Algorithm 2 respec-

tively.
— R̂E: estimated relative error of the unbiased estimator (7).

Random Trees: As a motivating example for further investigation of the SE
method, we consider a random tree that was generated in the following manner.
Starting from the tree root and for each node recursively, we connect 0, 1, 2 or 3
children with probabilities 0.3, 0.4, 0.1 and 0.2 respectively. In the following examples,
we consider trees of specific heights. Hence, we stop the tree generation at the
predetermined height.

Model 1: The generated tree is of height 60 and the number of nodes is 1976527.
Tables I and II present the comparison between the Knuth’s estimator and the SE
algorithm. Note that if SE uses B = 1 we get Knuth’s algorithm. We introduce the
parameter R — the number of independent replications of unbiased estimator — and
deliberately set the simulation effort to be the same (B ·R) for both algorithms.

Table I. Performance of 10 independent
runs of Knuth’s Algorithm 1 for a randomly
generated tree (Model 1) with B = 1 and
R = 20000.

Run Ĉ R̂E

1 3.06× 103 6.09× 10−1

2 1.44× 104 9.52× 10−1

3 1.05× 103 2.40× 10−1

4 7.08× 103 7.93× 10−1

5 3.01× 103 6.08× 10−1

6 4.36× 104 8.41× 10−1

7 3.26× 103 5.36× 10−1

8 3.01× 103 4.14× 10−1

9 1.51× 103 2.65× 10−1

10 1.06× 103 3.06× 10−1

Average 8.10× 103 5.56× 10−1

Table II. Performance of 10 independent
runs of SE Algorithm 2 for a randomly gen-
erated tree (Model 1) with B = 20 and
R = 1000.

Run ĈSE R̂E

1 2.04× 106 5.03× 10−2

2 1.83× 106 5.56× 10−2

3 1.99× 106 7.18× 10−2

4 2.02× 106 5.80× 10−2

5 1.90× 106 5.97× 10−2

6 1.95× 106 5.70× 10−2

7 2.03× 106 6.38× 10−2

8 1.83× 106 5.25× 10−2

9 2.14× 106 6.88× 10−2

10 1.97× 106 5.97× 10−2

Average 1.97× 106 5.97× 10−2

Model 2: We consider another model with p = (0.5, 0.1, 0.2, 0.2, 0.1) the tree was
generated until height h = 30. The number of vertices was 551. Tables III and IV
summarize the results.

Model 3: Finally, we consider a model with p = (0.0, 0.7, 0.2, 0.1), where the tree
was generated until height h = 30. The number of vertices was 25723. Tables V and VI
summarize the results.

It is interesting to note that for the first two models, Knuth’s estimator performs
poorly but this is not the case for the last model. The key to understand this phe-
nomenon lies in the analysis of the variance of corresponding child distributions. Re-
call the result that was obtained in Corollary 4.10. The variance reduction of SE is
governed by the

(
1 + σ2/µ2

)h term that clearly governs the exponential grow. By ex-
amining the parameters of the above models, we get a desired intuition for different
performance rates.
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Table III. Performance of 10 independent
runs of Knuth’s Algorithm 1 for a randomly
generated tree (Model 2) with B = 1 and
R = 20000.

Run Ĉ R̂E

1 1.38× 102 1.71× 10−1

2 1.53× 102 4.05× 10−1

3 1.68× 102 4.63× 10−1

4 1.85× 102 4.28× 10−1

5 1.15× 102 1.11× 10−1

6 1.89× 102 2.90× 10−1

7 1.25× 102 1.16× 10−1

8 2.06× 102 4.84× 10−1

9 2.06× 102 4.25× 10−1

10 5.38× 102 8.09× 10−1

Average 2.02× 102 3.70× 10−1

Table IV. Performance of 10 independent
runs of SE Algorithm 2 for a randomly gen-
erated tree (Model 2) with B = 20 and
R = 1000.

Run ĈSE R̂E

1 5.51× 102 5.97× 10−3

2 5.52× 102 6.24× 10−3

3 5.45× 102 6.18× 10−3

4 5.47× 102 6.00× 10−3

5 5.49× 102 6.31× 10−3

6 5.51× 102 6.35× 10−3

7 5.46× 102 6.08× 10−3

8 5.53× 102 5.97× 10−3

9 5.56× 102 6.01× 10−3

10 5.58× 102 6.05× 10−3

Average 5.51× 102 6.12× 10−3

Table V. Performance of 10 independent
runs of Knuth’s Algorithm 1 for a randomly
generated tree (Model 3) with B = 1 and
R = 20000.

Run Ĉ R̂E

1 2.52× 104 2.98× 10−2

2 2.60× 104 3.50× 10−2

3 2.73× 104 3.82× 10−2

4 2.63× 104 3.31× 10−2

5 2.55× 104 3.05× 10−2

6 2.56× 104 3.13× 10−2

7 2.63× 104 3.87× 10−2

8 2.51× 104 3.17× 10−2

9 2.55× 104 3.67× 10−2

10 2.50× 104 3.40× 10−2

Average 2.58× 104 2.58× 104

Table VI. Performance of 10 independent
runs of SE Algorithm 2 for a randomly gen-
erated tree (Model 3) with B = 20 and
R = 1000.

Run ĈSE R̂E

1 2.55× 104 1.05× 10−2

2 2.58× 104 1.07× 10−2

3 2.59× 104 1.10× 10−2

4 2.55× 104 1.11× 10−2

5 2.59× 104 1.08× 10−2

6 2.56× 104 1.08× 10−2

7 2.60× 104 1.08× 10−2

8 2.61× 104 1.08× 10−2

9 2.54× 104 1.09× 10−2

10 2.59× 104 1.04× 10−2

Average 2.57× 104 1.08× 10−2

— For Model 1 we have

p = (0.3, 0.4, 0.1, 0.2) ⇒ µ = 1.2, σ2 = 2.6 ⇒
(

1 +
2.6

1.22

)60

≈ 7.61× 1026.

— For Model 2 we have

p = (0.5, 0.1, 0.2, 0.2, 0.1) ⇒ µ = 1.5, σ2 = 2.05 ⇒
(

1 +
2.05

1.52

)30

≈ 2.75× 108.

— For Model 3 we have

p = (0.0, 0.7, 0.2, 0.1) ⇒ µ = 1.4, σ2 = 0.44 ⇒
(

1 +
0.44

1.42

)30

≈ 435.

Non–random Model: Numerous experiments we performed with the SE algorithm
indicate that it can introduce a good performance for different problems and models,
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not necessarily random ones. Unfortunately, it is generally not easy to develop rigorous
theoretical guarantees similar to those introduced in Section 3. But the numerical per-
formance can readily be examined. As an additional example, consider the following,
very structured tree.

The root has 3 children. The leftmost child becomes the root of full binary tree and
the rest of the children will continue the root behavior recursively. Let Tbft(h) be the
number of vertices in the big fat tree (BFT) of height h. Then,

Tbft(h)) = 1︸︷︷︸
root

+ 2h−1 − 1︸ ︷︷ ︸
left successor full binary tree

+ 2Tbft(h− 1)︸ ︷︷ ︸
rightmost and middle successors

.

Solving the recursion gives

Tbft(h) = (h+ 1)2h for h > 0. (30)

a

b c d

Fig. 5. BFT tree of height 3 with 32 nodes.

Let C (Tv) be Knuth’s estimator for the BFT tree of height h rooted at v and let
S(v) = {w1, w2, w3} ,

where w1 is a root of a full binary tree of height h − 1 and w2, w3 are the roots of BFT
trees of height h−1 respectively. Then, having in mind that for a full k-ary tree Knuth’s
estimator has zero variance [Knuth 1975], and, combining with (1), we have

Var (C (Tv)) = (31)

= 3
∑

16j63

Var
(
C
(
Twj

))
+

∑
16i<j63

(
Cost (Twi)− Cost

(
Twj

))2
= 3
(

Var (C (Tw1
)) + 2Var (C (Tw2

))
)

+
∑

16i<j63

(
Cost (Twi)− Cost

(
Twj

))2
= 6Var (C (Tw2

)) + 2 (Tbft(h− 1)− Cost (Tw1
))

2

= 6Var (C (Tw2)) + 2
(
h2h−1 − (2h − 1)

)2
.

Using the equation above, we show by induction that

Var (C (Tv)) > 1.4h−1
(
2h−2

)2
. (32)

For h = 2,

Var (C (Tv)) = 0 + 2(2− 3)2 = 2 > 1.42−1
(
22−2

)2
.

Journal of the ACM, Vol. 0, No. 0, Article , Publication date: 0.



Stochastic Enumeration Method for Counting Trees :33

Suppose that (32) holds for heights 1, . . . , h− 1 and consider the variance at level h.

Var (C (Tv)) = 6Var (C (Tw2
)) + 2

(
h2h−1 − (2h − 1)

)2
> 6

(
1.4h−2

(
2h−3

)2)
+ 2

(
h2h−1 − (2h − 1)

)2
>

1.5

1.4
(1.4 · 2 · 2)

(
1.4h−2

(
2h−3

)2)
>

1.5

1.4

(
1.4 · 1.4h−24 ·

(
2h−3

)2)
> 1.4h−1

(
2h−2

)2
.

Combining now (30) and (32), we can derive a lower bound on Knuth’s estimator’s
coefficient of variation:

CV2 =
Var (C (Tv))

(E (C (Tv)))
2 >

1.4h−1
(
2h−2

)2
((h+ 1)2h)

2

>
1.4h−1

(h+ 1)2

(
2h−2

)2
16 (2h−2)

2 >
1.4h−1

16(h+ 1)2
.

Clearly, this bound implies that the efficiency of Knuth’s estimator deteriorates at an
exponential rating for BFT trees.

In Figure 6, we plotted the numerically obtained coefficients of variations for the
BFT trees of different heights. In the left panel, the numerical CV of the Knuth’s
estimator is plotted against the exact CV value, which was calculated using the recur-
rence formula (31). In the right panel, we plotted the numerical coefficient of variation
of SE. Unfortunately, we do not posses a good upper bound for the CV of SE. Still,
we can clearly observe the superiority of the SE algorithm. The CV of SE Algorithm
2 seems to grow linearly while the CV of Knuth’s Algorithm 1 has a clear exponential
rate of growth. Moreover, while we could easily estimate the CV of SE Algorithm 2 on
the trees of height 100, we could not do the same for Algorithm 1 because of the large
relative error. As a consequence, we only report the CV until h = 30 for the Knuth’s
method.
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Fig. 6. The performance of Knuth’s Algorithm 1 and the SE Algorithm 2 on counting BFT trees of different
heights. Left panel: Knuth. Right panel: SE.
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6. CONCLUDING REMARKS
We introduced an adaptation of the SE algorithm for counting backtrack trees. We
showed that this estimator is unbiased, developed the upper bound for the coefficient
of variation and established that for almost all random trees the SE algorithm is a
FPRAS for estimation of the overall number of vertices. The proposed algorithm is
easy to implement and the numerical results introduce an excellent practical perfor-
mance. Of interest for future research is to theoretically investigate specific families
of trees that can be efficiently enumerated using the proposed SE algorithm. Addition-
ally, it will be interesting to rigorously study further adaptations of SE to different
hard counting problems.

A. APPENDIX
LEMMA A.1 (SUM OF k-SUBSETS). Let A = {r1, . . . , rn} be a set of scalars and de-

fine the set J to be
J = {R | R ⊆ A, |R| = u}, u = 1, . . . , n.

Then, ∑
R∈J

∑
r∈R r

u
=

(
n
u

)∑
16j6n rj

n
.

PROOF. Note that there are exactly
(
n−1
u−1
)

subsets in which each rj (j = 1, . . . , n)
appears. We conclude the proof with∑

R∈J

∑
r∈R r

u
=

(
n−1
u−1
)

u

∑
16j6n

rj =

(n−1)!
(u−1)!(n−u)!

u

∑
16j6n

rj

=

n!
u!(n−u)!

n

∑
16j6n

rj =

(
n
u

)∑
16j6n rj

n
.

2

LEMMA A.2 (SUMS OF SQUARES BOUND - FROM [KNUTH 1975]). Let r1, . . . , rn be
non–negative scalars and suppose without loss of generality that r1 6 r2 6 · · · 6 rn 6
a r1 for a positive scalar a > 1. Then,

∑
16j6n

r2j
1
n

6

(
a2 + 2a+ 1

4a

) ∑
16j6n

rj

2

.

PROOF. The proof is an immediate consequence from the following basic calculus in-
equality [Polya and Szegö 1998] (pages 71,253 – 254). Let l, L, b, B be positive numbers
such that

0 < l 6 l1 6 l2 6 · · · 6 ln 6 L and 0 < b 6 b1 6 b2 6 · · · 6 bn 6 B.

Then, (∑
16j6n l

2
j

)(∑
16j6n b

2
j

)
(∑

16j6n ljbj

)2 6
1

4

(√
LB

lb
+

√
lb

LB

)

holds. We continue the development by assigning

li = 1 and bi = ri ∀i = 1, . . . , n.
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Having in mind that rn 6 ar1, we get

l = L = 1 and b = r1, B = rn 6 ar1,

and the lemma follows immediately from

∑
16j6n

r2j
1
n

= n
∑

16j6n

r2j 6
1

4

(√
LB

lb
+

√
lb

LB

) ∑
16j6n

rj

2

6
1

4

(√
ar1
r1

+

√
r1
ar1

) ∑
16j6n

rj

2

6

6
1

4

(
√
a+

√
1

a

) ∑
16j6n

rj

2

6
1

4

(a+ 1)2

a

 ∑
16j6n

rj

2

.

2

PROOF OF LEMMA 4.2.

E

 ∑
16i<j6n

(Zi − Zj)2
 = E

(n− 1)
∑

16j6n

Z2
j − 2

∑
16i<j6n

ZiZj


= (n− 1)

∑
16j6n

E(Z2
j )− 2

∑
16i<j6n

E(ZiZj)

=︸︷︷︸
Zi,Zj i.i.d

(n− 1)
∑

16j6n

E(Z2
j )− 2

∑
16i<j6n

E(Zi)E(Zj)

= n(n− 1)
(
E(Z2

1 )
)
− 2

n(n− 1)

2
(E(Z1))2

= n(n− 1)
(
E(Z2

1 )
)
− (E(Z1))

2
= n(n− 1)σ2.

Consider now

Ua =
1

m

∑
16j6m

Z
(a)
j and Ub =

1

m

∑
16j6m

Z
(b)
j ,

and suppose that∣∣∣{Z(a)
1 , . . . , Z(a)

m } ∩ {Z(b)
1 , . . . , Z(b)

m }
∣∣∣ = k (k = 0, . . . ,m)

where k is the number of the same Z variables. Suppose also without loss of generality
that

{Z(a)
1 , . . . , Z(a)

m } ∩ {Z(b)
1 , . . . , Z(b)

m } = {Z(a)
1 , . . . , Z

(a)
k } = {Z(b)

1 , . . . , Z
(b)
k }.

Then,

E (Ua − Ub)2 = E

 1

m

∑
16j6m

Z
(a)
j − 1

m

∑
16j6m

Z
(b)
j

2

= E

 1

m

∑
k+16j6m

Z
(a)
j − 1

m

∑
k+16j6m

Z
(b)
j

2

.
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Having in mind that in this case,

U ′a =
1

m

∑
k+16j6m

Z
(a)
j and U ′b =

1

m

∑
k+16j6m

Z
(b)
j

are independent random variables that satisfies

E(U ′a) =
m− k
m

E(Ua), E(U ′b) =
m− k
m

E(Ub), E(U ′aU
′
b) = E(U ′a)E(U ′b),

and

Var(U ′a) = Var(U ′b) = Var

 1

m

∑
k+16j6m

Z

 =
1

m2
(m− k)σ2,

we can write,

E (Ua − Ub)2 = E (U ′a − U ′b)
2

= E
(
U ′2a − 2U ′aU

′
b + U ′2b

)
=

= 2
(
E
(
U ′2a
)
− (E (U ′a))

2
)

= 2Var(U ′a) = 2
1

m2
(m− k)σ2 6 2

σ2

m
.

By the previous equation combined with the linearity of expectation, we complete the
proof with

E

 ∑
16i<j6(nm)

(Ui − Uj)2
 6

((n
m

)
2

)
E (Ua − Ub)2

6

(
n
m

) ((
n
m

)
− 1
)

2
E (Ua − Ub)2

6

(
n

m

)((
n

m

)
− 1

)
σ2

m
.

2

LEMMA A.3 (RECURSIONS).

(1) The recursive formulas of the type
F (n) = αF (n− 1) + β, F (0) = 0,

has the solution of the form

F (n) = β
1− αn
1− α .

(2) The recursive formulas of the type
F (n) = αF (n− 1) + βαn + γ, F (0) = 0, α > 1, γ > 0,

is bounded by

F (n) 6 αnn(β + γ).

PROOF. For both equations, the proof is by induction on n.

(1) For

F (n) = αF (n− 1) + β, F (0) = 0.
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— For n = 1,

F (1) = 0 + β = β
1− α1

1− α .

— Suppose that the proposition holds for n− 1, so,

F (n) = αβ
1− αn−1

1− α + β =
βα− βαn + β − βα

1− α = β
1− αn
1− α .

(2) For,

F (n) = αF (n− 1) + βαn + γ, F (0) = 0, α > 1.

— For n = 1,

F (1) = α · 0 + βα+ γ 6︸︷︷︸
α>1

1 · α(β + γ) = βα+ γα.

— Suppose that the proposition holds for n− 1, so,
F (n) 6 α

(
(n− 1)αn−1(β + γ)

)
+ βαn + γ 6

6︸︷︷︸
α>1

α
(
(n− 1)αn−1(β + γ)

)
+ βαn + αnγ

6 αn(n− 1)(β + γ) + βαn + γαn = nαn(β + γ).

2

LEMMA A.4 (HYPER NODE CHILD DISTRIBUTION). Consider a random tree model
where each node have 0, . . . , k successors with the corresponding probabilities p =
(p0, . . . , pk) such that

µ =
∑

06j6k

jpj , σ2 =
∑

06j6k

j2pj − µ2,

and consider a hyper node v. Then,

E
( |S(v)|
|v|

)2

=
σ2

|v| + µ2.

PROOF. Having a hyper node v = {v1, . . . , v|v|} in hand, the number of children of
each vj ∈ v is distributed with p = (p0, . . . , pk). Under the above settings,

|S(v)| =

∣∣∣∣∣∣
∑

16j6|v|

S(vj)

∣∣∣∣∣∣ ,
where S(vj) are independent and identically distributed random variables such that
0 6 S(vj) 6 k, E(S(vj)) = µ and Var(S(vj)) = σ2. Note that

Var

( |S(v)|
|v|

)
= Var

(∑
16j6|v| |S(vj)|
|v|

)
=
σ2

|v| ,

and as a consequence,

E
( |S(v)|
|v|

)2

= Var

( |S(v)|
|v|

)
+ µ2 =

σ2

|v| + µ2.

2
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LEMMA A.5 (HYPER NODE CHILD CONCENTRATION). Consider a random tree
model where each node have 0, . . . , k successors with the corresponding probabilities
p = (p0, . . . , pk) such that

µ =
∑

06j6k

jpj ,

and consider a hyper node v. Then,

P(|S(v)| < |v|) 6 2e−
2|v|(µ−1)2

k2 .

PROOF. By Hoeffding’s inequality [Hoeffding 1962], let

Y1, . . . , Yn

be independent random variables. If Yj are almost surely bounded; that is,

P(Yj ∈ [aj , bj ]) = 1,

then

P

∣∣∣∣∣∣
∑

06j6n

Yj − E

 ∑
06j6n

Yj

∣∣∣∣∣∣ > t

 6 2e
− 2t2∑

06j6n (bj−aj)2 . (33)

With a hyper node v = {v1, . . . , v|v|}, the number of successors of each vj ∈ v is dis-
tributed with p = (p0, . . . , pk) for 0, . . . , k respectively. Under the above settings,

|S(v)| =
∑

16j6|v|

|S(vj)|,

where S(vj) are independent and identically distributed random variables such that
0 6 S(vj) 6 k and E(S(vj)) = µ. Combining this with (33) for t = µ|v| − |v| we immedi-
ately arrive to

P(|S(v)| < |v|) 6 P (||S(v)| − µ|v|| > µ|v| − |v|) 6 2e
− 2(µ|v|−|v|)2∑

06j6|v| (k−0)2 6

6 2e
− 2|v|2(µ−1)2

|v|k2 = 2e−
2|v|(µ−1)2

k2 .

2
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