
Chapter 9
Propositional SAT Solving

Joao Marques-Silva and Sharad Malik

Abstract The Boolean Satisfiability Problem (SAT) is well known in computa-
tional complexity, representing the first decision problem to be proved NP-complete.
SAT is also often the subject of work in proof complexity. Besides its theoretical
interest, SAT finds a wide range of practical applications. Moreover, SAT solvers
have been the subject of remarkable efficiency improvements since the mid-1990s,
motivating their widespread use in many practical applications including Bounded
and Unbounded Model Checking. The success of SAT solvers has also motivated
the development of algorithms for natural extensions of SAT, including Quantified
Boolean Formulas (QBF), Pseudo-Boolean constraints (PB), Maximum Satisfiabil-
ity (MaxSAT) and Satisfiability Modulo Theories (SMT) which also see application
in the model-checking context. This chapter first covers the organization of modern
conflict-driven clause learning (CDCL) SAT solvers, which are used in the vast ma-
jority of practical applications of SAT. It then reviews the techniques shown to be
effective in modern SAT solvers.

9.1 Introduction

Given a propositional logic formula, determining whether there exists a variable
assignment such that the formula evaluates to true is referred to as the Boolean Sat-
isfiability Problem, commonly abbreviated as SAT. SAT has seen much theoretical
interest as the canonical NP-complete problem [30]. Given its NP-Completeness, it
is very unlikely that there exists any polynomial algorithm for SAT. However, NP-
Completeness does not exclude the possibility of finding algorithms that are efficient
enough to solve many interesting SAT instances. In addition to model checking, the
subject of this book, these instances arise from many diverse areas—many practi-
cal problems in AI planning [61], circuit testing [107], and software modeling [54]
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can be formulated as SAT instances. This has motivated research in practically ef-
ficient SAT solvers. This research has resulted in the development of several SAT
algorithms that have seen practical success. These algorithms are based on various
principles such as resolution [33], search [32], local search and random walk [98],
Binary Decision Diagrams [25], Stålmarck’s algorithm [100], and others. Some of
these algorithms are complete, while others are stochastic methods. For a given SAT
instance, complete SAT solvers can either find a solution (i.e., a satisfying variable
assignment) or prove that no solution exists. Stochastic methods, on the other hand,
cannot prove the instance to be unsatisfiable even though they may be able to find a
solution for certain kinds of satisfiable instances quickly. Stochastic methods have
applications in domains such as AI planning [61] and FPGA routing [87], where
instances are likely to be satisfiable and proving unsatisfiability is not required.
However, for many other domains, including verification using model checking,
the primary task is to prove unsatisfiability of the instances. Applications of SAT to
model checking arise in bounded model checking [20], as well as interpolant—[83]
and induction—[99] based approaches to unbounded model checking. For these,
complete SAT solvers are a requirement.

In recent years search-based algorithms based on the well-known Davis–Loge-
mann–Loveland algorithm [32] (sometimes referred to as the DPLL algorithm for
historical reasons) are emerging as some of the most efficient methods for complete
SAT solvers. Researchers have been working on DPLL-based SAT solvers for about
fifty years. In the last ten years we have seen significant growth and success in SAT
solver research based on the DPLL framework. Earlier SAT solvers based on DPLL
include Tableau (NTAB) [31], POSIT [40], 2cl [112] and CSAT [36] among others.
In the mid-1990s, Marques-Silva and Sakallah in the GRASP SAT solver [80, 81],
and Bayardo and Schrag in the relsat SAT solver [14] proposed to augment the
original DPLL algorithm with non-chronological backtracking and conflict-driven
clause learning (CDCL). These techniques greatly improved the efficiency of the
DPLL algorithm for structured (in contrast to randomly generated) SAT instances.
Many practical applications emerged (e.g., [20, 54, 87]), which pushed these solvers
to their limits and provided strong motivation for finding even more efficient algo-
rithms. This led to a new generation of solvers such as SATO [118], Chaff [86],
BerkMin [44] and more recently MiniSAT [38] and PicoSAT [19] which pay a lot
of attention to optimizing various aspects of the DPLL algorithm. Some of these
deal with efficient implementations of specific steps in the DPLL and CDCL, e.g.,
unit-propagation in SATO and Chaff, and others with more efficient search space
pruning such as the locality-based search in Chaff. The results are some very ef-
ficient SAT solvers that can often solve SAT instances generated from industrial
applications with tens of thousands or even millions of variables.

A DPLL-based SAT solver is a relatively small piece of software. Many of the
solvers mentioned above have only a few thousand lines of code (these solvers are
mostly written in C or C++, for efficiency reasons). However, the algorithms in-
volved are quite complex and significant attention is focused on various aspects
of the solver such as coding, data structures, choosing algorithms and heuristics
for specific steps, and parameter tuning. In this chapter we chart the journey from
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the original basic DPLL framework through the introduction of efficient techniques
within this framework culminating in state-of-the-art CDCL solvers. Given the
depth of literature in this field, it is impossible to do this in any comprehensive
way; rather, we focus on techniques with consistently demonstrated efficiency in
available solvers. While for the most part we focus on techniques within the basic
DPLL search framework, we will also briefly describe other approaches and look at
some possible future research directions.

The chapter is organized as follows. Section 9.2 introduces the notation used
throughout the chapter. Section 9.3 provides an overview of modern CDCL SAT
solvers. Section 9.4 details the key techniques that are used in CDCL SAT solvers.
Section 9.5 provides a brief overview of SAT-based problem solving, highlighting a
number of problems of interest to model checking. Finally, Sect. 9.6 concludes the
chapter.

9.2 Preliminaries

This section introduces the notation used in the remainder of the chapter. Stan-
dard propositional logic definitions are used throughout the chapter (e.g., [21, 62]).
Boolean formulas are represented in calligraphic font, e.g., F ,H,S,U , . . . Boolean
variables are represented with lowercase letters from the start or the end of the al-
phabet, e.g., a, b, c, . . . , r, s, t, u, v,w,x, y, z. Whenever necessary, subscripts can
be used, e.g., x1,w1, . . . An atom is a Boolean variable. A literal is a variable x

or its complement ¬x. For notational convenience, the complement of a variable
x is represented as x̄. A Boolean formula F is defined inductively over a set of
propositional variables, with the standard logical connectives, ¬, ∧, ∨, as follows:

1. An atom is a Boolean formula.
2. If F is a Boolean formula, then (¬F) is a Boolean formula. (When F represents

an atom x, ¬F is represented by x̄.)
3. If F and G are Boolean formulas, then (F ∨ G) is a Boolean formula.
4. If F and G are Boolean formulas, then (F ∧ G) is a Boolean formula.

Similar definitions can be developed for the other logic connectives, → and ↔. (The
use of parentheses is not enforced, and standard binding rules apply (e.g., [62]), with
parentheses being used only to clarify the presentation of formulas.) The variables
of a Boolean formula F are represented by var(F). Set X is also used to refer to the
set of variables of a formula, X = var(F). A clause c is a non-tautologous disjunc-
tion of literals. A term t is a non-contradictory conjunction of literals. Commonly
used representations of Boolean formulas include conjunctive and disjunctive nor-
mal forms (resp. CNF and DNF). A CNF formula F is a conjunction of clauses.
A DNF formula F is a disjunction of terms. CNF and DNF formulas can also be
viewed as sets of sets of literals. The two representations will be used interchange-
ably throughout the chapter. In the remainder of the chapter, Boolean formulas are
referred to as formulas, which includes CNF formulas and DNF formulas. The nec-
essary qualification will be used when necessary.



250 J. Marques-Silva and S. Malik

Given a formula F , a truth assignment ν is a map from the variables of F to
{0,1}, ν : var(F) �→ {0,1}.

Given a truth assignment ν, the value taken by a formula, denoted Fν , is defined
inductively as follows:

1. If x is a variable, xν = ν(x).
2. If F = (¬G), then

Fν =
{

0 if Gν = 1
1 if Gν = 0.

3. If F = (E ∨ G), then

Fν =
{

1 if Eν = 1 or Gν = 1
0 otherwise.

4. If F = (E ∧ G), then

Fν =
{

1 if Eν = 1 and Gν = 1
0 otherwise.

In some contexts, including search algorithms for the Boolean Satisfiability
(SAT) problem, a truth assignment is relaxed to be partial, i.e., not all variables
are assigned a truth value. A truth assignment is complete if the map is total; oth-
erwise it is partial. For a partial truth assignment, if ν(x) is not specified, then we
write ν(x) = u.

For a CNF formula F , let ν be a truth assignment. A clause c is satisfied if
there exists a literal l ∈ c, such that lν = 1. If all literals of c take value 0, then the
clause is falsified. If all literals but one are assigned value 0, and the remaining one
is unassigned, then the clause is unit. Finally, a clause is unresolved if it is neither
falsified, nor satisfied, nor unit. A CNF formula is satisfied if all clauses are satisfied,
and falsified if at least one clause is falsified.

A truth assignment is satisfying for F (or simply a satisfying truth assignment) if
Fν = 1. A formula F is satisfiable if it has a satisfying truth assignment; otherwise
it is unsatisfiable. If a formula F is satisfiable, we write F �⊥. If a formula F is
unsatisfiable, we write F �⊥.

Definition 1 (Boolean Satisfiability (SAT)) Given a formula F , the decision prob-
lem SAT consists of deciding whether F is satisfiable.

CDCL SAT solvers, but also DPLL SAT solvers, implement some form of back-
tracking search. Both CDCL and DPLL SAT solvers branch on variables; these are
referred to as decision variables.

A key procedure in SAT solvers is the unit clause rule [33]: if a clause is unit,
then its sole unassigned literal must be assigned value 1 for the clause to be satisfied.
The iterated application of the unit clause rule is referred to as unit propagation or
Boolean constraint propagation (BCP) [117]. In modern CDCL solvers, as in most
implementations of DPLL, logical consequences are derived with unit propagation.
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Unit propagation is applied after each branching step (and also during preprocess-
ing1), and is used for identifying variables that must be assigned a specific Boolean
value. If a falsified clause is identified, a conflict condition is declared, and the al-
gorithm backtracks.

In CDCL SAT solvers, each variable x is characterized by a number of prop-
erties, including the value, the antecedent clause (or just antecedent) and the
decision level, denoted respectively by ν(x) ∈ {0, u,1}, α(x) ∈ F ∪ {NIL}, and
δ(x) ∈ {−1,0,1, . . . , |X|}. A variable x that is assigned a value as the result of ap-
plying the unit clause rule is said to be implied. The unit clause c used for implying
variable x is said to be the antecedent of x, α(x) = c. For variables that are decision
variables or are unassigned, the antecedent is NIL. Hence, antecedents are only de-
fined for variables whose value is implied by other assignments. The decision level
of a variable x denotes the depth of the decision tree at which the variable is assigned
a value in {0,1}. The decision level for an unassigned variable x is −1, δ(x) = −1.
The decision level associated with variables used for branching steps (i.e., decision
assignments) is specified by the search process, and denotes the current depth of the
decision stack. The decision stack represents the sequence of branched-upon vari-
ables. Hence, a variable x associated with a decision assignment is characterized
by having α(x) = NIL and δ(x) > 0. When describing and analyzing SAT solvers,
implication graphs [80, 81] are used to graphically depict the application of unit
propagation at each decision level, as a consequence of each branching decision.
Each node in the implication graph shows a literal, with the incoming edges to each
literal identifying the antecedent of the assignment. If a falsified clause is identified
by unit propagation, this is marked in the implication graph with a special node ⊥.
The implication graph can be viewed as a graphical representation of the relation-
ship between implied variables and their antecendents.

Figure 1 exemplifies the implication graphs considered in this chapter. This ex-
ample also illustrates the above definitions. With the exception of decision level 0,
a decision literal is associated with each decision level. For example, for decision
level 1, the decision literal is w, denoting that w is assigned value 1. For simplicity
all examples shown just use positive literals (i.e., variables are always decided or
implied value 1). Given the implication graph, the antecedent of a given implied as-
signment can be inferred from the incoming edges. For example, b is assigned value
1 because a and x are assigned value 1. Hence, the antecedent of b is (x̄ ∨ ā ∨ b).

A standard operation associated with Boolean formulas is resolution [33, 94].
Given clauses C1 = (x ∨ A) and C2 = (x̄ ∨ B), where A and B are disjunctions of
literals without complemented literals, the resolution of C1 and C2 is C3 = (A∨B).
As shown in Sect. 9.4, resolution serves to explain a wide range of techniques used
in modern SAT solvers, including CDCL SAT solvers. For example, unit propaga-
tion can be explained with resolution operations and, as illustrated in Sect. 9.4.1,
clause learning can also be explained as a sequence of resolution operations. More-
over, resolution is also associated with a number of complete proof systems for
SAT (e.g., [62, 111]).

1Preprocessing serves to simplify Boolean formulas and is briefly covered in Sect. 9.4.7.
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Fig. 1 Example of notation and unit propagation

Modern SAT solvers typically accept CNF formulas [78]. This is due to the inex-
pensive deduction provided by unit propagation. Procedures for CNF-encoding (or
clausifying) arbitrary Boolean formulas are well-known (e.g., [90, 110]).

9.3 CDCL SAT Solvers: Organization

This section provides a high-level description of modern CDCL SAT solvers. After-
wards, Sect. 9.4 details the most important algorithmic techniques associated with
CDCL SAT solvers, namely conflict-driven clause learning [80, 81], unique impli-
cation points [80, 81], learned clause minimization [105], lazy data structures [86],
search restarts [11, 45] and lightweight branching heuristics [86].

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main differ-
ences are the call to function CONFLICTANALYSIS each time a conflict is identified,
and the call to BACKTRACK when backtracking takes place. Moreover, the BACK-
TRACK procedure allows for backtracking non-chronologically.

In addition to the main CDCL function, the following auxiliary functions are
used:

• UNITPROPAGATION consists of the iterated application of the unit clause rule. If
a falsified clause is identified, then a conflict indication is returned.

• PICKBRANCHINGVARIABLE consists of selecting a variable and assigning it a
value.

• CONFLICTANALYSIS consists of analyzing the most recent conflict and learning
a new clause from the conflict. The organization of this procedure is described in
Sect. 9.4.1.

• BACKTRACK backtracks to the decision level computed by CONFLICTANALY-
SIS.

• ALLVARIABLESASSIGNED tests whether all variables have been assigned, in
which case the algorithm terminates indicating that the CNF formula is satisfiable.
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Algorithm 1 Typical CDCL algorithm

CDCL(F , ν)

1 if (UnitPropagation(F , ν) == CONFLICT)
2 then return UNSAT
3 dl ← 0 � Decision level
4 while (not AllVariablesAssigned(F , ν))
5 do (x, v) = PickBranchingVariable(F , ν)

6 dl ← dl + 1 � Increment decision level due to new decision
7 ν ← ν ∪ {(x, v)}
8 if (UnitPropagation(F , ν) == CONFLICT)
9 then β = ConflictAnalysis(F , ν)

10 if (β < 0)
11 then return UNSAT
12 else Backtrack(F , ν,β)

13 dl ← β � Decrement decision level due to
backtracking

14 return SAT

An alternative criterion to stop execution of the algorithm is to check whether all
clauses are satisfied. However, in modern SAT solvers that use lazy data struc-
tures, clause state cannot be maintained accurately, and so the termination crite-
rion must be whether all variables are assigned. Thus, in this case the algorithm
provides a complete assignment.

Arguments to the auxiliary functions are assumed to be passed by reference.
Hence, F and ν are supposed to be modified during execution of the auxiliary func-
tions.

The typical CDCL algorithm shown does not account for a few often-used tech-
niques, namely search restarts [11, 45] and implementation of clause deletion poli-
cies [44]. Search restarts cause the algorithm to restart itself. However, past search
history is not erased, for example previously learnt clauses are kept. Clause dele-
tion policies are used to decide learned clauses that can be deleted based on their
expected future utility. Clause deletion allows the memory usage of the SAT solver
to be kept under control.

9.4 CDCL SAT Solvers

This section reviews the techniques that are common to CDCL SAT solvers. These
techniques can be organized as follows:

1. Conflict-driven clause learning [80, 81].
2. Unique implication points [80, 81].
3. Learned clause minimization [105].
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Algorithm 2 Main steps of conflict analysis procedure

CONFLICTANALYSIS(F , ν)

1 Start at node ⊥
2 Recursively visit literals of antecedents assigned at current decision level
3 Record complement of antecendent literals assigned at lower decision levels
4 Record complement of branching literal
5 Create clause with recorded literals
6 return largest decision level of recorded literals other than the current level

4. Lazy data structures [86].
5. Search restarts [11, 45].
6. Lightweight branching heuristics [86].
7. Additional techniques [7, 44, 89].

9.4.1 Clause Learning and Non-chronological Backtracking

Learning from conflicts has been extensively studied in a number of areas since
the 1970s (e.g., [106]). In some contexts, learning from conflicts was shown to
be ineffective, both in theory and in practice [9, 115]. Clause learning in SAT
solvers [80, 81] is inspired by this earlier work on learning from conflicts, but ex-
hibits important differences. The most important aspect is that clause learning ex-
ploits the sequence of unit propagation steps that produces the conflict. In addition,
clause learning in SAT solvers exploits UIPs (see Sect. 9.4.2). The original ideas of
clause learning in SAT solvers were proposed in the GRASP SAT solver [72, 80, 81].
A recent alternative formalization of clause learning can be found in [78]. This sec-
tion overviews clause learning by summarizing the main steps and illustrating how
these are applied to a simple example.

As the CDCL algorithm is executed, if a falsified clause is identified, conflict
analysis is used to create a clause that explains and prevents the same conflict from
re-occurring. Algorithm 2 summarizes the main steps of the conflict analysis (and
learning) procedure. The input arguments are the CNF formula, and the current set
of assignments. Literals implied at the current decision level are traversed, starting
from the ⊥ vertex (which represents the falsified clause). For each traversed literal,
the literals in the antecedent are analyzed. A literal assigned at a decision level
lower than the current one has its complemented literal recorded, whereas a literal
assigned at the current decision level is scheduled to be traversed. The process is
repeated until the branching variable for the current decision level is visited.

Figure 2 shows a simple example of unit propagation yielding a conflict. The
implication graph summarizes how unit propagation produces the conflict. Algo-
rithm 2 is executed on the implication graph, starting from node ⊥. Literals a, b,
and z are visited, since all are assigned at decision level 3. The recorded literals
are x̄ and z̄. Thus, the created clause is (x̄ ∨ z̄). These steps are shown in Fig. 3.
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Fig. 2 Clause learning: (a) example formula and (b) conflict after unit propagation

Fig. 3 Clause learning: creating a new clause

Traversed edges are marked with thick lines. Each literal for which the complement
is recorded is highlighted and shown inside a box. Moreover, the derivation of the
learned clause is formally explained by the application of a sequence of (selected)
resolution steps. Hence, clause learning can be viewed as a way to decide which
clauses to learn by selective resolution steps. Figure 4 also shows the result after
backtracking. The backtrack step shown is the one proposed in [86], which differs
somewhat from the backtrack step originally associated with clause learning in the
GRASP SAT solver [80, 81]. The GRASP SAT solver delayed backtracking until
both assignments had been considered for the branching variable. This would avoid
possibly unnecessary (and, in the case of GRASP, expensive) backtracking.

A number of researchers have investigated ways to improve the basic clause
learning procedure outlined above (e.g., [6]). Nevertheless, most state-of-the-art
SAT solvers implement the basic clause learning procedure, first proposed in
GRASP [80, 81], with the backtracking step used in Chaff, but improved with
learned clause minimization (which is described in Sect. 9.4.3). Recent work ad-
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Fig. 4 Clause learning: after backtracking

dresses techniques to decide which clauses are expected to be of interest for the
subsequent search [7].

9.4.2 Unique Implication Points

A key aspect of clause learning in SAT solvers is Unique Implication Points (UIPs).
If unit propagation due to a branching decision yields a conflict, then any domina-
tor [109] of the conflict node with respect to the branching decision is a UIP [80, 81].
UIPs can be related with failure-driven assertions [79], used in the context of cir-
cuit testing, and mimic, at the logic level, the notion of unique sensitization points
(USPs) also used in testing [42]. UIPs serve a number of purposes in CDCL SAT
solvers. First, UIPs allow learning of smaller clauses. Second, UIPs allow learning
of multiple clauses. The clause learning procedure outlined in Algorithm 2 can be
modified to stop when the first dominator is identified. The intuitive justification
for this is that assigning the literal associated with the UIP suffices to reproduce
the conflict. Hence, the clause learning procedure can terminate by recording the
complement of the UIP literal.

Figure 5 illustrates the use of UIPs in clause learning. For this example, without
the identification of UIPs, the learned clause would be (w̄ ∨ x̄ ∨ ȳ ∨ z̄). This is
shown in Fig. 6, where the clause is learned following the steps outlined earlier.
However, if clause learning stops at the first UIP, then the learned clause becomes
(w̄∨ x̄ ∨ ā). Observe that stopping at the first UIP essentially consists of performing
fewer resolution steps, i.e., the clause learned by stopping at the first UIP is already
present in the resolution steps used to derive the learned clause without stopping at
the first UIP.

Moreover, observe that, for this concrete example, the learned clause is not only
smaller, but induces backtracking to a lower decision level. A straightforward ob-
servation is that clauses learned by stopping learning at the first UIP result in back-
tracking decision levels that are no larger than the decision levels of clauses learned
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Fig. 5 Unique implication points: (a) example formula and (b) conflict after unit propagation

Fig. 6 Clause learning without UIPs

by stopping at the decision literal. A slightly more detailed characterization of this
property can be found in [6].

Although the modern usage of UIPs is based on stopping clause learning at the
first UIP, the original approach was to learn clauses at every UIP [80, 81]. Recent re-
sults, obtained on problem instances from the SAT competitions, suggest that learn-
ing clauses at multiple UIPs can improve SAT solver performance [96]. An example
of clause learning at multiple UIPs is shown in Fig. 8. As shown in Fig. 9a, conflict
analysis by stopping at the first UIP produces the learned clause (w̄ ∨ ȳ ∨ ā). How-
ever, it is possible to continue learning clauses at each additional UIP. For the ex-
ample in Fig. 8, z is also a UIP (it is actually the UIP corresponding to the decision
variable). Observe that (x = 1 and) z = 1 implies a = 1, and so a = 0 implies z = 0.
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Fig. 7 Clause learning with UIPs

Fig. 8 Multiple UIPs: (a) example formula and (b) conflict after unit propagation

However, this information is not obtained by unit propagation, i.e., a = 0 does not
lead to z = 0. Nevertheless, by noting that z is a UIP, the following clause is learned:
(z̄ ∨ x̄ ∨ a). This is illustrated in Fig. 9b. With this additional clause added to the
formula, a = 0 now implies z = 0 whenever x = 1. The clauses obtained by clause
learning at multiple UIPs are inspired by, but generalize, the concept of global im-
plications first studied in the area of circuit testing [97].
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Fig. 9 Multiple UIPs: (a) first UIP clause; and (b) second UIP clause

Fig. 10 Learned clause minimization: (a) example formula; (b) conflict after unit propagation

9.4.3 Learned Clause Minimization

The basic clause learning procedure has not changed significantly since the mid-
1990s [80, 81]. However, recent SAT solvers exploit a key optimization step after
clause learning: learned clause minimization [105]. In the mid-2000s, researchers
noticed that learned clauses exhibit important redundancies, and that these can be re-
moved with simple procedures. The performance gains obtained with learned clause
minimization justify the inclusion of this technique in most modern SAT solvers.

Let C1 = (x ∨ A) and C2 = (x̄ ∨ A ∨ B) be clauses of F , where A and B

are disjunctions of literals. Resolution between C1 and C2 produces the clause
C3 = (A ∨ B) which subsumes C2. If C3 is added to F , then C2 can be removed
from F , since it is subsumed by C3. This form of resolution is called self-subsuming
resolution [105]. One clause minimization procedure consists of the iterative appli-
cation of self-subsuming resolution between a learned clause c and the antecedents
of the literals in c [105]. Figure 10 shows an example of clause minimization by
self-subsuming resolution. Clause learning without clause minimization, shown in
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Fig. 11 Clause learning without minimization

Fig. 12 Minimization with self-subsuming resolution

Fig. 11, yields the learned clause Cl = (x̄ ∨ ȳ ∨ z̄ ∨ b̄). However, clause learning
followed by self-subsuming resolution between Cl and the antecedent of b yields
the clause C′

l = (x̄ ∨ ȳ ∨ z̄), as shown in Fig. 12. Observe that, in contrast with
UIPs, self-subsuming resolution steps are resolution steps which are appended to
the resolution derivation to generate the final minimized learned clause.

In practice, self-subsuming resolution is often not enough to effectively mini-
mize learned clauses. An alternative is the so-called recursive minimization proce-
dure [105], which is summarized in Algorithm 3. Figure 13 shows an example of
applying recursive clause minimization. As shown in Fig. 14, clause learning with-
out minimization yields clause (w̄ ∨ x̄ ∨ c̄). For this example, self-subsuming res-
olution cannot be applied, because resolution operations make the resulting clause
larger. However, the recursive clause minimization procedure can be used to prove
that literal c̄ can be dropped from the clause. As shown in Fig. 14b, the traversal
from vertex c solely reaches marked vertex w. Hence, the literal c̄ can be dropped
from the learned clause, and so the final clause becomes (w̄ ∨ x̄).
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Algorithm 3 Main steps of recursive clause minimization procedure

RECURSIVECLAUSEMINIMIZATION(c)

1 Mark literals in c

2 Implied literals in c are flagged as candidates for removal
3 foreach candidate literal l in c

4 do Traverse implication graph starting from antecedent of l

5 Stop at decision literals or marked literals
6 if Non-marked literal visited
7 then Keep literal l in c

8 else Drop literal l from c

9 return c

Fig. 13 Learned clause minimization: (a) example formula; (b) conflict after unit propagation

Fig. 14 Clause learning: (a) no minimization; and (b) recursive minimization

9.4.4 Lazy Data Structures

Until the early 2000s most DPLL/CDCL SAT solvers used adjacency lists as the un-
derlying data structure for clause representation [70], with the exception being the
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Fig. 15 Operation of
watched literals

head-tail representation proposed in SATO [119]. Adjacency lists require L refer-
ences from literals to clauses, where L denotes the total number of literals. This can
become an issue when learning many (possibly large) clauses. The head-tail repre-
sentation requires between 2 × C and L references from literals to clauses [70, 78],
where C denotes the number of clauses. Although more efficient in practice than
adjacency lists, the head-tail representation causes overhead when backtracking, be-
sides requiring a varying number of references.

One of the main contributions of the Chaff SAT solver was the use of a new
(lazy) data structure, the watched literals data structure. The watched literals data
structure has several important advantages. First, for each clause only two refer-
ences from literals to the clause are required. This results in 2 × C references in
total. Also, when backtracking, no bookkeeping is required. This provides signifi-
cant performance gains over the other data structures. As a result, watched literals
have become the de facto standard in the implementation of modern SAT solvers
(e.g., [19, 38]). Observe that the lowest number of references for each clause is 2,
since one must be able to decide when the clause is unit so that unit propagation
can be used to assign a value to some variable. Figure 15 illustrates the operation of
the watched literals data structure, being adapted from [78]. The example considers
a single clause with 5 literals, with the arrows showing the currently watched liter-
als. The current decision level is either 3 or 4, and the clause has 2 literals already
assigned value 0 (shown crossed out in the figure). At decision level 5, one of the
watched literals is assigned value 0. This requires the algorithm to find another lit-
eral to watch, and so the reference is updated. At decision level 7, another watched
literal is assigned value 0. In this case, all literals are visited, trying to find a literal
that is still unassigned and not watched. In this case none exists, i.e., all literals but
one are assigned value 0 and the remaining unassigned literal is already watched.
Hence, the clause is declared unit. As a result, the only unassigned literal is assigned
value 1 (shown as a black box in the figure), so that the clause becomes satisfied.
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Afterwards, the algorithm backtracks to decision level 4. As indicated earlier, there
is no need to update the references. Thus, when backtracking, the watched literal
data structure requires no bookkeeping.

9.4.5 Search Restarts

Another standard ingredient in modern SAT solvers is search restarts [45]. Research
in the late 1990s showed that DPLL SAT solvers exhibit heavy-tail behavior on sat-
isfiable problem instances when the branching heuristic is randomized [45]. This
means that the run times of DPLL SAT solvers can exhibit large variations for the
same satisfiable instance, and that large run times can happen with non-negligible
probability. This observation motivated the proposal of rapid randomized restarts,
i.e., to restart the search after a fixed (or alternatively increasing) number of con-
flicts. The increase in the number of conflicts is one possible technique to guarantee
that the SAT algorithm is still complete when search restarts are implemented; an-
other is to keep all learned clauses [68]. Later work [11] showed that search restarts
were also very effective for CDCL SAT solvers, and for solving unsatisfiable prob-
lem instances. These conclusions were further substantiated by the implementation
of search restarts in the Chaff SAT solver [86].

As with the techniques described in earlier sections, search restarts are commonly
used in modern CDCL SAT solvers [19, 38, 78]. In recent years, a number of works
have studied different restart policies, including [7, 19, 52, 103].

9.4.6 Lightweight Branching Heuristics

Modern CDCL SAT solvers also exploit so-called lightweight branching heuris-
tics, most notably the VSIDS branching heuristic [86]. The previous generation of
branching heuristics [73] maintained counts of assigned literals in each clause. This
incurs a significant overhead. For example, in the GRASP SAT solver, branching
could account for more than two thirds of the run time [70]. In contrast, lightweight
branching heuristics use solely information from conflicts to decide which variables
to branch upon. Hence, static or dynamic literal counts are not required. Variables
that are involved in more conflicts are more likely to be used for branching than
variables not involved in conflicts. This is achieved by associating a metric with
each variable, which is incremented for variables involved in conflicts. On average,
the most recent conflicts are more relevant than earlier conflicts, since these may
no longer be useful for the current state of the search. As a result, VSIDS divides
the variable metrics by a constant after a fixed number of conflicts. Besides the
low overhead of this heuristic, it also results in what is called locality-based search.
Since the variables occurring in recent conflicts are weighted more heavily, the al-
gorithm is biased towards branching on these variables. Thus, the search focuses on
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the sub-space of recent conflicts, effectively pruning this sub-space before moving
on to other sub-spaces. While only intuitively understood, this has a very significant
impact on the size of the search space explored and is credited with the speed-up
of this generation of SAT solvers. As with the techniques described in earlier sub-
sections, the VSIDS branching heuristic has become a de facto standard in modern
CDCL SAT solvers.

9.4.7 Additional Techniques and Recent Trends

This section reviews a few other techniques that are found in modern CDCL SAT
solvers. One key issue with CDCL SAT solvers is that the number of learned clauses
can become too large. As a result, researchers have developed different solutions for
this problem since the mid-1990s. Original solutions were based on restricting the
size of learned clauses [14, 80, 81]. More recent work proposes the use of different
metrics to decide which clauses to delete [7, 44]. Earlier work considered activity
heuristics [44], i.e., if a clause is not used for unit propagation, then it can be marked
for deletion. More recent work gives preference to deleting clauses whose literals
are distributed by more decision levels [7].

The main change to the organization of branching is the use of phase saving [89],
i.e., the value of each assigned literal is saved when backtracking takes place. Af-
terwards, this saved value is reused when that literal is branched upon.

Formula preprocessing has been studied extensively [24, 69, 74]. Recent work
has shown that specific forms of preprocessing are effective [37, 57]. Among the
many techniques that have been proposed, the most widely used include variable
elimination, blocked clause elimination and elimination of subsumed clauses. More-
over, preprocessing techniques have been integrated within SAT solvers, under the
general framework of inprocessing [58].

Additional promising research directions include algorithm portfolios for
SAT [96, 116] and parallel algorithms for SAT [47–49].

9.5 SAT-Based Problem Solving

The importance of SAT solvers is demonstrated by the many problem-solving uses
of SAT. This section overviews the different ways in which SAT solvers can be used
for solving different problems.

The standard use of SAT solvers is as an engine for solving decision problems,
i.e., requiring a yes/no answer. A large number of practical applications of SAT
also involve iterative SAT solving, i.e., the problem to be solved requires calling
a SAT solver a number of times. Clearly, the number of calls to the SAT solver is
paramount in the overall efficiency.

In some cases, the number of calls to the SAT solver is polynomial in the size of
the problem instance, but in some other cases the number of calls to the SAT solver
is exponential in the worst case.
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9.5.1 Incremental SAT

A key issue with iterative use of SAT solvers is how to communicate minimal
changes in the formula to the SAT solver and, rather more importantly, how to reuse
the learned clauses from previous SAT solver calls. One alternative is to commu-
nicate the complete CNF formula each time the SAT solver is to be called. This
approach is often referred to as non-incremental, and reuse of learned clauses is
not used. Another alternative is to communicate to the SAT solver only the clauses
that should be discarded (or deactivated) and the new clauses that should be con-
sidered (or activated). This alternative is referred to as incremental, and its use in
applications based on iterative SAT solving is now common. The essential ideas for
incremental SAT solving are summarized below.

Most modern SAT solvers achieve these goals by using assumptions [38].
Clauses in the SAT solver are associated with a new assumption variable. Then,
assumption variables are used in each SAT solver call to activate/deactivate clauses.
The use of assumptions has important advantages and significant disadvantages.
First, any learned clause will keep a record of the clauses explaining its derivation.
Thus, activation (resp. deactivation) of assumption variables immediately activates
(resp. deactivates) learned clauses that are usable (resp. unusable) in the next SAT
solver call.

Another technique to implement incremental SAT, and so to allow reuse of
learned clauses, is to use some proof-tracing mechanism [2, 19] (which includes
representation of resolution proofs) [19].

Both approaches listed have advantages and disadvantages. Nevertheless, the use
of assumptions is more widespread in published work.

9.5.2 Unsatisfiable Cores

In many SAT applications, including model checking, SAT solvers are expected to
produce unsatisfiable cores [120], i.e., a subset of the original subformula which was
used to prove unsatisfiability. Alternatively, a SAT solver can produce a resolution
proof [120]. Unsatisfiable cores find a wide range of applications, including model
checking [22], debugging specifications [101], and abstraction refinement [15]. Res-
olution proofs also find different applications, e.g., in computing interpolants [84].

Two main alternatives exist for computing unsatisfiable cores. The original ap-
proach consists of tracing the process of clause learning in CDCL SAT solvers, e.g.,
by writing an explanation for each learned clause to disk (or keeping it in memory in
a separate data structure). Examples of variants of this approach include [2, 19, 120].
A widely used alternative is based on the use of assumption variables (see previous
section). When learning clauses, all assumption variables associated with the clauses
used for explaining a learned clause are added to the learned clause. Thus, when the
SAT solver terminates, instead of producing the empty clause, it produces a clause
containing the list of assumption variables of all clauses involved in proving the
instance unsatisfiable, i.e., an unsatisfiable core.
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9.5.3 CNF Encodings

In most uses of SAT, problems are not initially represented in CNF, e.g., [108]. As a
result, a large body of research has been dedicated to encoding richer domains into
CNF. Concrete examples include Satisfiability Modulo Theories (SMT), Constraint
Satisfaction Problems (CSP), Answer Set Programming (ASP), but also simple ex-
tensions of propositional logic, that include non-clausal and pseudo-Boolean (PB)
constraints.2

Encodings to CNF often address two key aspects. First, the size of the result-
ing CNF formula, namely whether the size of the encoding is polynomial in the
original problem representation. Second, whether the CNF encoding preserves arc-
consistency (e.g., see [1, 8, 92]), i.e., whether unit propagation suffices to (i) identify
partial assignments that cannot be extended to a satisfying assignment; and (ii) iden-
tify any necessary assignments.

A number of ways exist to encode SMT into SAT. An up-to-date review is pro-
vided in [63]. Similarly to SMT, there are a number of ways to encode CSP into
SAT. An overview of CSP to SAT encodings is provided in [92]. Like with SMT
and CSP, there are also different ways to encode ASP into SAT. A recent account is
provided in [55].

In many model-checking applications, instances of SAT are naturally non-clausal
(e.g., interpolants in interpolant-based model checking [84]). As a result, mech-
anisms for encoding non-clausal formulas into clausal form have been devel-
oped (e.g., [90, 110]). A recent survey of these encodings is provided in [92].

For many practical applications, the domain variables are Boolean and the goal
is to encode a pseudo-Boolean (PB) constraint of the general form:

n∑
j=1

aj xj �
 b (1)

where �
 ∈ {<,≤,=,≥,>}, aj ≥ 0, with j ∈ {1, . . . , n}, b ≥ 0, and xj are proposi-
tional. For analyzing the size of the encodings, aM denotes the value of the largest
coefficient in (1).

A number of special cases of (1) have been extensively studied in the past. These
include cardinality constraints of the form AtMostk, AtLeastk, and Equalsk:

n∑
j=1

xj �
 k (2)

Of these, constraints of the form AtMost1 have also been extensively studied [92].
(Observe that an AtLeast1 constraint can be trivially encoded with a clause, and so
an Equals1 constraint can be encoded with an AtLeast1 and an AtMost1 constraint.)

There is a vast body of work on encoding PB constraints, cardinality constraints
and AtMost1/Equals1 constraints [92]. Table 1 shows examples of CNF encodings.

2See [21] and references therein.
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Table 1 Examples of CNF Encodings

Type Encoding # Clauses Arc-Consistency Reference

Pseudo-Boolean Operational linear No [113]

BDD exponential Yes [39]

GPWE O(n3 log(n) log(aM)) Yes [8]

GPWE* O(n3 log(aM)) Yes [1]

Cardinality BDD O(nk) Yes [39]

Seq. Counter O(nk) Yes [102]

Sort. Networks O(n log2 n) Yes [13, 39]

Card. Networks O(n log2 k) Yes [4]

AtMost1 Seq. Counter O(n) Yes [102]

Bitwise O(n logn) Yes [41, 91]

9.5.4 Optimization

In many settings, the problem to be solved involves a set of constraints (F ) subject
to a linear cost function f = ∑

x∈X x. In Boolean domains, optimization problems
can be described as follows:

min
∑n

i=1 cj xj

s.t. F
(3)

(3) can be solved with algorithms for pseudo-Boolean optimization. For this con-
crete case, the cost function can be optimized with standard linear or binary search
(see, e.g., [95] for an overview).

Alternatively, (3) can be reduced to weighted partial Maximum Satisfiabil-
ity (e.g., [51]). The original constraints F are set as hard clauses. Moreover, each
term in the cost function can be represented as a soft clause (¬xj ) with cost cj .
A wealth of algorithms have been developed in recent years for MaxSAT. These
include branch-and-bound search, iterative SAT solving and (unsatisfiable) core-
guided approaches. Recent accounts are provided in [3, 66, 85].

9.5.5 Model Enumeration

In many settings, a SAT solver is required to compute all satisfying assignments.
A well-known example is in model checking [59, 83]. Another well-known example
is the use of SAT solvers in lazy SMT solvers [12], where satisfying assignments
are iteratively computed until a model of the SMT formula is found, or the formula
is proved unsatisfiable. An essential step in model enumeration is the identification
of prime implicants, e.g., [93].

Given a (total) satisfying assignment for the variables, a prime implicant can be
obtained by iteratively checking whether each variable is required for satisfying the
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formula [93]. The resulting set of literals is a prime implicant, and its complement
can be used for blocking the recomputation of any model that is covered by the
prime implicant.

9.5.6 Minimal Sets

A number of applications of SAT solvers involve computing minimal sets. Concrete
examples include computing minimal unsatisfiable subsets (MUSes) [16, 46], min-
imal correction subsets (MCSes) [67, 75], prime implicates (PIs) [23], and minimal
models [17, 18], among many others. Recent work shows that all these problems
can be solved with the same algorithms [76]. Algorithms for computing minimal
sets of Boolean formulas include the following:

• Insertion-based (or constructive) [104].
• Deletion-based (or destructive) [10, 28].
• Dichotomic [50].
• QuickXplain [60].
• Progression [76].

Of these, QuickXplain and Progression offer the best performance in terms of the
worst case number of calls to a SAT solver. The deletion-based algorithm is well
known, and has been rediscovered in different settings, e.g. [10, 28]. Given a ref-
erence set of elements and a monotone predicate P , each element is iteratively re-
moved from the reference set and the predicate is checked on the resulting set. If the
predicate holds, the element is dropped from the reference set; otherwise it is kept.
In the end, the resulting set is a minimal set.

Depending on the type of minimal set being computed, different approaches ex-
ist for reducing the number of calls to a SAT solver. For computing MUSes and
PIs, existing techniques include using unsatisfiable cores to remove unnecessary
clauses [10, 16, 35] and model rotation [16, 114].

9.5.7 Quantification

Quantified Boolean Formulas (QBF) are Boolean formulas where the variables can
either be existentially or universally quantified. Quantification changes the complex-
ity class, and QBF is a well-known PSPACE-Complete problem [26, 62]. In prac-
tice, solving QBF formulas turns out to be significantly harder than solving SAT.
A large number of approaches have been proposed for deciding QBF formulas, i.e.,
for deciding whether a formula is true or false. A recent overview of algorithms for
QBF is provided in [43, 56].
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9.6 Research Directions

Despite a well-defined set of key techniques, CDCL SAT solvers have been the
subject of continued improvements over the years. This section outlines possible
lines of research in the area of propositional SAT solving.

One recent promising area of research is the integration of extended resolu-
tion into SAT solvers [5, 53]. Extended resolution allows definitions to be created
(e.g., new variables representing some Boolean expression). This can provide an
added degree of flexibility in modern CDCL SAT solvers.

Another recent promising area of research is to use the DPLL(T ) paradigm [88]
in designing problem-specific SAT-based algorithms. Concrete examples include
specific solvers for handling SAT problems with parity constraints [65], and also
PBO solvers [71].

One additional area for future improvements to SAT solvers is formula simplifi-
cation, before or during search [37, 57, 58].

Besides improvements to SAT solver technology, a number of additional research
directions can be envisioned in the area of SAT solving. First, applications of SAT
continue to be proposed on a regular basis. This is expected to continue in the future.
A related topic is the development of improvements to existing applications of SAT.
Moreover, the general area of SAT-based problem solving has been the subject of
remarkable improvements in recent years, namely in terms of the many uses of
SAT solvers as oracles for solving function problems. Concrete examples include
Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization (PBO) [66,
95], minimal unsatisfiable subsets (MUSes) [16, 27], minimal correction subsets
(MCSes) [75], backbones of Boolean formulas [77, 121], minimal models, and, in
general, minimal sets over monotone predicates [76].

One final area of research is Quantified Boolean Formulas (QBF). Despite the
many improvements made in recent years, improvements to QBF solvers are still
far inferior to those made to SAT solvers. Nevertheless, recent new uses of SAT
solvers in QBF solving suggest further improvements are to be expected [56].
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