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MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129
JANUARY 1975, PAGES 121-136

Estimating the Efficiency of Backtrack Programs*

By Donald E. Knuth

To Derrick H. Lehmer on his 70th birthday, February 23, 1975

Abstract. One of the chief difficulties associated with the so-called backtracking tech-
nique for combinatorial problems has been our inability to predict the efficiency of a
given algorithm, or to compare the efficiencies of different approaches, without actu-
ally writing and running the programs. This paper presents a simple method which pro-
duces reasonable estimates for most applications, requiring only a modest amount of
hand calculation. The method should prove to be of considerable utility in connection
with D. H. Lehmer’s branch-and-bound approach to combinatorial optimization.

The majority of all combinatorial computing applications can apparently be han-
dled only by what amounts to an exhaustive search through all possibilities. Such
searches can readily be performed by using a well-known “depth-first” procedure which
R. J. Walker [21] has aptly called backtracking. (See Lehmer [16], Golomb and
Baumert [6], and Wells [22] for general discussions of this technique, together with
numerous interesting examples.)

Sometimes a backtrack program will run to completion in less than a second,
while other applications seem to go on forever. The author once waited all night for
the output from such a program, only to discover that the answers would not be forth-
coming for about 10% centuries. A “slight increase” in one of the parameters of a
backtrack routine might slow down the total running time by a factor of a thousand;
conversely, a “minor improvement” to the algorithm might cause a hundredfold im-
provement in speed; and a sophisticated ‘“‘major improvement” might actually make
the program ten times slower. These great discrepancies in execution time are charac-
teristic of backtrack programs, yet it is usually not obvious what will happen until the
algorithm has been coded and run on a machine.

Faced with these uncertainties, the author worked out a simple estimation pro-
cedure in 1962, designed to predict backtrack behavior in any given situation. This
procedure was mentioned briefly in a survey article a few years later [8]; and during
subsequent years, extensive computer experimentation has confirmed its utility. Several
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122 DONALD E. KNUTH

improvements on the original idea have also been developed during the last decade.

The estimation procedure we shall discuss is completely unsophisticated, and it
probably has been used without fanfare by many people. Yet the idea works surpris-
ingly well in practice, and some of its properties are not immediately obvious, hence
the present paper might prove to be useful.

Section 1 presents a simple example problem, and Section 2 formulates back-
tracking in general, developing a convenient notational framework; this treatment is
essentially self-contained, assuming no prior knowledge of the backtrack literature. Sec-
tion 3 presents the estimation procedure in its simplest form, together with some theo-
rems that describe the virtues of the method. Section 4 takes the opposite approach,
by pointing out a number of flaws and things that can go wrong. Refinements of the
original method, intended to counteract these difficulties, are presented in Section 5.
Some computational experiments are recorded in Section 6, and Section 7 summarizes
the practical experience obtained with the method to date.

1. Introduction to Backtrack. It is convenient to introduce the ideas of this pa-
per by looking first at a small example. The problem we shall study is actually a rath-
er frivolous puzzle, so it does not display the economic benefits of backtracking; but
it does have the virtue of simplicity, since the complete solution can be displayed in a
small diagram. Furthermore the puzzle itself seems to have been tantalizing people for
at least sixty years (see [19]); it became extremely popular in the U.S.A. about 1967
under the name Instant Insanity.

Figure 1 shows four cubes whose faces are colored red (R), white (W), green (G),
or blue (B); colors on the hidden faces are shown at the sides. The problem is to ar-
range the cubes in such a way that each of the four colors appears exactly once on
the four back faces, once on the top, once in the front, and once on the bottom.
Thus Figure 1 is not a solution, since there is no blue on the top nor white on the
bottom; but a solution is obtained by rotating each cube 90°.

Cube 1 Cube 2 Cube 3 Cube L4
W R R G G B W W
G W w B B R R G
- B ---------- R - .o w . G s .
R R G B

FIGURE 1. Instant Insanity cubes

We can assume that these. four cubes retain their relative left-to-right order in all
solutions. Each of the six faces of a given cube can be on the bottom, and there are
four essentially different positions having a given bottom face, so each cube can be
placed in 24 different ways; therefore the “brute force” approach to this problem is to
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ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 123

try all of the 24% = 331776 possible configurations. If done by hand, the brute force
procedure might indeed lead to insanity, although not instantly.

It is not difficult to improve on the brute force approach by considering the ef-
fects of symmetry. Any solution clearly leads to seven other solutions, by simulta-
neously rotating the cubes about a horizontal axis parallel to the dotted line in Figure 1,
and/or by rotating each cube 180° about a vertical axis. Therefore we can assume with-
out loss of generality that Cube 1 is in one of three positions, instead of considering all
24 possibilities. Furthermore it turns out that Cube 2 has only 16 essentially different
placements, since it has two opposite red faces; see Figure 2, which shows that two of
its 24 positionings have the same colors on the front, top, back, and bottom faces. The
same observation applies to Cube 3. Hence the total number of essentially different
ways to position the four cubes is only 3+ 16+ 16-24 = 18432; this is substantially
less than 331776, but it might still induce insanity.

Cube 2 Cube 2
G G
W E—t B %
R ) A NI N L
Ry Ry

FIGURE 2. Rotation by 180° in this case leaves the relevant colors unchanged

A natural way to reduce the number of cases still further now suggests itself.
Given one of the three placements for Cube 1, some of the 16 positionings of Cube 2
are obviously foolhardy since they cannot possibly lead to a solution. In Figure 1, for
example, Cubes 1 and 2 both contain red on their bottom face, while a complete solu-
tion has no repeated colors on the bottom, nor on the front, top, or back; since this
placement of Cube 2 is incompatible with the given position of Cube 1, we need not
consider any of the 1624 = 384 ways to place Cubes 3 and 4. Similarly, when
Cubes 1 and 2 have been given a compatible placement, it makes sense to place Cube
3 so as to avoid duplicate colors on the relevant sides, before we even begin to con-
sider Cube 4.

Such a sequential placement can be represented by a tree structure, as shown in
Figure 3. The three nodes just below the root (top) of this tree stand for the three es-
sentially different ways to place Cube 1. Below each such node are further nodes rep-
resenting the possible placements of Cube 2 in a compatible position; and below the
latter are the compatible placements of Cube 3 (if any), etc. Note that there is only
one solution to the puzzle, represented by the single node on Level 4.
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124 DONALD E. KNUTH

Level O

Level 1

Level 2

Level 3

‘Level L

FIGURE 3. The Instant Insanity tree

This procedure cuts the number of cases examined to 3 +3 + 16 + 10 - 16 +
13 - 24 + 1 = 524; for example, each of the 10 nodes on Level 2 of the tree involves
the consideration of 16 ways to place Cube 3. It is reasonable to assume that a sane
person can safely remain compos mentis while examining 524 cases; thus, we may con-
clude that systematic enumeration can cut the work by several orders of magnitude
even in simple problems like this one. (Actually a further refinement, which may be
called the technique of “homomorphism and lifting”, can be applied to the Instant In-
sanity problem, reducing the total number of cases examined to about 50, as shown
originally in [1]; see also [7] for further discussion and for a half-dozen recent refer-
ences. But such techniques are beyond the scope of the present paper.)

The tree of Figure 3 can be explored in a systematic manner, requiring compara-
tively little memory of what has gone before. The idea is to start at the root and con-
tinually to move downward when possible, taking the leftmost branch whenever a de-
cision is necessary; but if it is impossible to continue downward, “backtrack’ by con-
sidering the next alternative on the previous level. This is a special case of the classical
Trémaux procedure for exploring a maze [17, pp. 47-50], [13, Chapter 3] .

2. The General Backtrack Procedure. Now that we understand the Instant In-
sanity example, let us consider backtracking in general. The problem we wish to solve
can be expressed abstractly as the task of finding all sequences (x,, x,,* * *, x,,) which
satisfy some property P,(x,, x,,***,x,). For example, in the case of Instant Insan-
ity, n = 4; the symbol x, denotes a placement of the kth cube; and P,(x,,x,,X3,X,)
is the property that the four cubes exhibit all four colors on all four relevant sides.

The general backtrack approach consists of inventing intermediate properties
Py (xy,***,x;) such that

) Py (xy, o, X, Xy ) implies  P(xy,ccc,x) for 0 <k <n.

In other words, if (x,,-* -, x,) does not satisfy property P, then no extended se-
quence (x,***,X;, X;.+,) can possibly satisfy P, ,; hence by induction, no ex-
tended sequence (x,,***, X, **, Xx,) can solve the original condition P,. The back-
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ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 125

track procedure systematically enumerates all solutions (x,,***,x,) to the original
problem by considering all partial solutions (x,,***,x;) that satisfy P, using the
following general algorithm:

Step B1. [Initialize.] Set k to O.

Step B2. [Compute the successors.] (Now P.(x,,***,x;) holds,and 0 <k
<n) Set S, to thesetofall x,, , suchthat P, (x,,***, X, X, ) is true.

Step B3. [Have all successors been tried?] If S, is empty, go to Step B6.

Step B4. [Advance.] Choose any element of Sk,‘ call it x; ., and delete it
from §;. Increase k by 1.

Step BS. [Solution found?] (Now Pj(x,,***,x;) holds,and 0 <k <n)

If k <n, return to Step B2. Otherwise output the solution (x,,**+,x,) and go on to
Step B6.

Step B6. [Backtrack.] (All extensions of (x;,***,x;) have now been ex-
plored.) Decrease k by 1. If k>0, return to Step B3; otherwise the algorithm
terminates. 0O

Condition (1) does not uniquely define the intermediate properties P, so we
often have considerable latitude when we choose them. For example, we could simply
let P, be true forall (x,,**-,x;), when k <n; thisis the weakest possible prop-
erty satisfying (1), and it corresponds to the brute force approach, where some 24*
possibilities would be examined in the cube problem. On the other hand the strongest
property is obtained when P, (x,,* -, x;) is true if and only if there exist x;,,,
+*+,x, satisfying P, (x;,***,x;, X34 q,"*",X,). Inour example this strongest
property would reduce the search to the examination of a trivial twig of a tree, but the
decisions at each node would require considerable calculation. In general, stronger
properties limit the search but require more computation, so we want to find a suit-
able trade-off. The solution adopted in our example (namely to use symmetry consid-
erations when placing Cubes 1, 2, and 3, and to let P,(x,,* -, x;) mean that no
colors are duplicated on the four relevant sides) is fairly obvious, but in other problems
the choice of P, is not always so self-evident.

3. A Simple Estimate of the Running Time. For each (x,,**-,x,) satisfying
P, with 0 <k <n, the algorithm of Section 2 will execute Steps B2, B4, BS, and B6
once, and Step B3 twice. (To see this, note that it is true for Steps B2, BS, and B6,
and apply Kirchhoff’s law as in [12].) Let us call the associated running time the cost
c(xy,**+,x;). When k = n, the corresponding cost amounts to one execution of
Steps B3, B4, B5, and B6. If we also let ¢( ) be the cost for £k =0 (i.e., one
execution of Steps B1, B2, B3, and B6), the total running time of the algorithm comes
to exactly

® ST e

k>0 Pp(xy,xyg)

This formula essentially distributes the total cost among the various nodes of the
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126 DONALD E. KNUTH

tree. Since the time to execute Step B2 can vary from node to node, and since the time
to execute Step B5 depends on whether or not k = n, the running time is not simply
proportional to the size of the tree except in simple cases.

Let T be the tree of all possibilities explored by the backtrack method; i.e.,let

3 T= {(x, ", x)k>0and P,(x;, " ", Xg) holds}.
Then we can rewrite (2) as

) cost(T) = 3 c(f).
T

Our goal is to find some way of estimating cost(T), without knowing a great deal
about the properties P,, since the example of Section 1 indicates that these proper-
ties might be very complex.

A natural solution to this estimation problem is to try a Monte Carlo approach,
based on a random exploration of the tree; for each partial solution (x,,***, x;)
for 0 <k <n, we can choose x; ., at random from among the set S, of all con-
tinuations, as in the following algorithm. (A related procedure, but which is intrin-
sically different because it is oriented to different kinds of estimates, has been pub-
lished by Hammersley and Morton [10], and it has been the subject of numerous pa-
pers in the literature of mathematical physics; see [5].)

Step E1. [Initialize.] Set k<— 0,D <— 1,and C<«—c(). (Here C will be
an estimate of (2), and D is an auxiliary variable used in the calculation of C,
namely the product of all “degrees” encountered in the tree. An arrow “ <— " de-
notes the assignment operation equivalent to Algol’s “ := ”; and ¢() denotes the
cost at the root of the tree, as in (2) when k = 0.)

Step E2. [Compute the successors.] Set S, to the set of all x; ., such that
Py Gegsm sy Xps Xy g ) is true, and let d; be the number of elements of §.
(If k = n, then S, is empty and d, =0.)

Step E3. [Terminal position?] If d, = 0, the algorithm terminates, with C
an estimate of cost(T).

Step E4. [Advance.] Choose an element X, ,, €S, at random, each element
being equally likely. (Thus, each choice occurs with probability 1/d;.) Set D «—
d;D, then set C«— C+c(xy,***,x;,,)D. Increase k by 1 and return to
Step E2. O

This algorithm makes a random walk in the tree, without any backtracking, and
computes the estimate

(5) C=c()*+dyelx)) +dodclxy, x,) + dod dyc(xy, x5, X3) + 000,

where d, is a function of (x,*-*,x,), namely the number of x;,, satisfying
Py (xy,0 0, X, X3y q). We may define d, = 0 foralllarge £, thereby regarding
(5) as an infinite series although only finitely many terms are nonzero.

The validity of estimate (5) can be proved as follows.
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ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 127

THEOREM 1. The expected value of C, as computed by the above algorithm, is
cost (T), as defined in (4).

PrOOF. We shall consider two proofs, at least one of which should be convinc-
ing. First we can observe that for every r = (x;,***, xk) € T, the term

©® dody * = * dp_qc(xy,* ", %)

occurs in (5) with probability 1/dyd, *** d,_,, since this is the chance that the al-
gorithm will consider the partial solution (x,,***x,). Hence the sum of all the terms
(6) has the expected value (4).

The second proof is based on a recursive definition of cost (T), namely

Q) cost(T) = c( ) + cost(T,) + =« +cost(T,),

where d =d,, is the degree of the root of the tree and T,,-- -, T, are the respec-
tive subtrees of the root, namely

T, = {@Gy,°*,x;) €T | x; is the jth element of S,}.

We also have C = c() +dyC', where C' = c(x,) + d c(x;, x;) + d dyc(x,, x5, X3)
+ ¢+ + - has the form of (5) and is an estimate of one of the T;. Since each of the
d =d, values of j is equally likely, the expected value of C is

E(C) = c( ) + dE(C) = c( ) + do((E(C,) + + + + + EC,))d),

where E(C].) = cost (T].) by induction on the size of the tree. Hence E(C) =
cost (7). O

This theorem demonstrates that C is indeed an appropriate statistic to compute,
based on one random walk down the tree. As an example of the theorem, let us con-
sider Figure 3 in Section 1, using the costs shown there (since they represent the time
to perform Step B2, which dominates the calculation). We have cost(7T) = 524, and
if the estimation algorithm is applied to the tree it is not difficult to determine that
the result will be C = 243, or 291, or 435, or 531, or 543, or 819, or 1107, with
respective probabilities 1/6, 1/6, 1/6, 1/6, 1/12, 1/6, and 1/12. Thus, a fairly reason-
able approximation will nearly always be obtained; and we know that the mean of
repeated estimates will approach 524, by the law of large numbers.

Since the proof of Theorem 1 applies to all functions c¢(¢) defined over trees,
we can apply it to other functions in order to obtain further information:

COROLLARY 1. The expected value of D at the end of the above algorithm is
the number of terminal nodes in the tree.

Proor. Let c(t) =1 if ¢ is terminal, and c¢(¢) = 0 otherwise; then C =
D at the end of the algorithm, hence E(D) = E(C) = Zc(t) is the number of terminal
nodes by Theorem 1. O

COROLLARY 2. The expected value of the product dyd, - - -d,_, for fixed k,
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128 DONALD E.KNUTH

when the dj’s are computed by the above algorithm, is the number of nodes on level
k of the tree.

ProoF. Let ¢(¢) = 1 for all nodes on level k, and c(f) = 0 otherwise; then
C=dyd;**-d,_, atthe end of the algorithm. (Note that dyd, - *d,_, is zero
if the algorithm terminates before reaching level k.) O

Corollary 2 gives some insight into the “meaning” of the individual terms of our
estimate (5); the term dod, =+ -d;_; * c(x,,***, x;) represents the number of
nodes on level k times the cost associated with a typical one of these nodes.

4. Some Cautionary Remarks. The algorithm of Section 3 seems too simple to
work, and there are many intuitive grounds for skepticism, since we are trying to pre-
dict the characteristics of an entire tree based on the knowledge of only one branch!
The combinatorial realities of most backtrack applications make it clear that different
partial solutions can have drastically different behavior:patterns.

Just knowing that an experiment yields the right expected value is not much con-
solation in practice. For example, consider an experiment which produces a result of
1 with probability 0.999, while the result is 1,000,001 with probability 0.001; the
expected value is 1001, but a limited sampling would almost always convince us that
the true answer is 1.

There is reason to suspect that the estimation procedure of Section 3 will suffer
from precisely this defect: It has the potential to produce huge values, but with very
low probability, so that the expected value might be quite different from typical esti-
mates.

Let N, be the number of nodes on level k of the tree (cf. Corollary 2). In
most backtrack applications, the vast majority of all nodes in the search tree are con-
centrated at only a few levels, so that in fact the logarithm of N, (the number of
digits in V,) has a bell-shaped curve when plotted as a function of &:

®)

log Nk

k

On the other hand our estimate (5) is composed of a series of estimates N, = d,d,
**+d,_, which are never bellshaped; since the d’s are integers, the N, grow ex-
ponentially with k, until finally dropping to zero:

log N!

©) K

k

Although these two graphs have completely different characteristics, we are getting es-
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ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 129

timates which in the long run produce (8) as an average of curves like (9).

Consider also Figure 3, where we have somewhat arbitrarily assigned a cost of 1
to the lone solution node on Level 4. Perhaps our output routine is so slow that the
solution node should really have a cost of 10%; this now becomes the dominant por-
tion of the total cost, but it will be considered only 1/12 of the time, and then it will
be multiplied by 12.

There is clearly a danger that our estimates will almost always be low, except for
rare occasions when they will be much too high.

5. Refinements. Our estimation procedure can be modified in order to circum-
vent the difficulties sketched in Section 4. One idea is to introduce systematic bias
into Step E4, so that the choice of x,,; is not completely random; we can try to
investigate the more interesting or more difficult parts of the tree.

The algorithm can be generalized by using the following selection procedure in
place of Step E4.

Step E4'. [Generalized advance.] Determine, in any arbitrary fashion, a sequence
of d, positive numbers p,(1), p,(2),* **,p,(d,) whose sum is unity. Then choose
a random integer J, in the range 1 <J, <d, in such a way that J, =j with
probability p,(7). Let x,,, be the J,th element of S, and set D «— D/p,(J;),
C<—=C+clxy,***,x;4,)D. Increase k by 1 and return to Step E2. O

(Step E4 is the special case p,(j) = 1/d, for all j.) Again we can prove that
the expected value of C will be cost (7T), no matter how strangely the probabilities
p, () are biased in Step E4’; in fact, both proofs of Theorem 1 are readily extended
to yield this result. It is interesting to note that the calculation of D involves a pos-
teriori probabilities, so that it grows only slightly after a highly probable choice has
been made. The technique embodied in Step E4' is generally known as importance
sampling [9, pp. 57-59].

Some choices of the p,(j) are much better than others, of course, and the most
interesting fact is that one of the possible choices is actually perfect:

THEOREM 2. If the probabilities p,(j) in Step E4' are chosen appropriately, the
estimate C will always be exactly equal to cost (T).

Proor. For 1 <j<d,,let p,(j) be

o cost (T(xq, * =+, X, X 1))
() = cost (T(x,,* * *, X)) = clxy,t v, xk)’

(10)

where T(x;,***,x;) is the set of all + € T having specified values (x;,***, x;)
for the first K components, and where x,,,(/) is the jth element of S;. Now we
can prove that the relation

C + (cost(T(xy,***, xp) —clxy, ==, x, D = cost(T)

is invariant, in the sense that it always holds at the beginning and end of Step E4'.
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130 DONALD E.KNUTH

Since cost(T(xy,***,x;)) =c(x,,***,x;) when d, =0, the algorithm terminates
with C = cost (7).
Alternatively, using the notation in the second proof of Theorem 1, we have

C = o) + ((cost(T) — e Veost (TG

for some j, and C; = cost (Ti) by induction, hence C = cost(T). O

Of course we generally need to know the cost of the tree before we know the
exact values of these ideal probabilities p(j), so we cannot achieve zero variance in
practice. But the form of the p§(j) shows what kind of bias is likely to reduce the
variance; any information or hunches that we have about relative subtree costs will be
helpful. (In the case of Instant Insanity there is no simple a priori reason to prefer one
cube position over another, so this idea does not apply; perhaps Instant Insanity is a
mind-boggling puzzle for precisely this reason, since intuition is usually much more
valuable.)

Theorem 2 can be extended considerably, in fact we can derive a general formula
for the variance. The generating function for C satisfies

(11) @) =220 Y pCie''?h
1<j<d

and from this equation it follows by differentiation that

var (C) = C"'(1) + C'(1) — C(1)?
(12) T, )\
Y wCp X P,—P,-(cos; ( ) _costp ( ,)> .
1<j<d 1<i<j<d i i

Iterating this recurrence shows that the variance can be expressed as

~ 1 . feost(T(t, i)  cost(T(z,}))\?
13 — —_ t t —
13)  var(©) té‘T P(1) 1<i<]Z<d(t) v (p (7)( p'(d) p'() ) ’

where P(f) is the probability that node ¢ is encountered, d(¢) is the degree of
node ¢, p*() is the probability that we go from ¢ to its jth successor, and Tz, )
is the subtree rooted at that successor.

From this explicit formula we can get a bound on the variance, if the probabil-
ities are reasonably good approximations to the relative subtree costs:

THEOREM 3. If the probabilities p,(j) in Step E 4' satisfy

cost (T(xl" 0 Xps xk+1(i))) < cost (T(xl, C s Xgs xk+1(i)))

a -
Py () - P, )
for all i,j and for some fixed constant o = 1, the variance of C is at most
2 n
(14) <<°_‘__-|_'4_29_‘_il> — 1> cost (T)>.
a
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ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 131

ProOF. Let g; = cost(T})/p;, and assume without loss of generality that q, <
q,< *°° S$q,4 <agq,. From elementary calculus we have, under the constraints
cost(TI-) =0 and Zp =1,

cost (T)* o2 + 2a + 1 <

> <

1<j<d  Pj 4a

2
Z cost (T])> ,

1</<d

equality occurring when d =2 and ¢, = ag,. Furthermore

> ppia;i—a)l= X M-(
i'j\4i j

1<i<j<d 1<j<a Pj

2
> cost(Ti)> .

1<j<d

Letting 8 = (a2 + 2a + 1)/4a, we can prove (14) by induction since (12) now yields

var(C) < ) wvar (Cp/p; + (B — 1)cost (T)?

1<j<d

< X @' =1)cost(T)*/p; + (B — 1) cost (T)>

1<j<d
< (B —B)cost(T)? + (B — Dcost(T)?. O

Theorem 3 implies Theorem 2 when a = 1; for a > 1 the bound in (14) is
not especially comforting, but it does indicate that a few runs of the algorithm will
probably predict cost(7) with the right order of magnitude.

Another way to improve the estimates is to transform the tree into another one
having the same total cost, and to apply the Monte Carlo procedure to the transformed
tree. For example, the tree fragment

a B8 7% ¢ g

with costs Cy,***, Cs and subtrees a,*<+,n can be replaced by

Cl+C2+C5+C]J'+C5

a gy & ¢ C M

by identifying five nodes. Intermediate condensations such as
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¢ +Cy+0,
Co 75 ¢ Cs
a B [

are also possible.

One application of this idea, if the estimates are being made by a computer pro-
gram, is to eliminate all nodes on levels 1, 3,5, 7, ++ of the original tree, making the
nodes formerly on levels 2k and 2k + 1 into a new level k. For example, Figure 4
shows the tree that results when this idea is applied to Figure 3. The estimates in this
collapsed tree are C= 211, or 451, or 461, or 691, or 931, with respective probabil-
ities .2, .3, .1, .3, .1, so we have a slightly better distribution than before.

51

1

FIGURE 4. Collapsed Instant Insanity tree

Another use of this idea is to eliminate all terminal nodes having nonterminal
“brothers”. Then we can ensure that the algorithm never moves directly to a configu-
ration having d, = 0 unless all possible moves are to such a terminal situation; in
other words, “stupid” moves can be avoided.

Still another improvement to the general estimation procedure can be achieved by
“stratified sampling” [9, pp. 55—57]. We can reduce the variance of a series of esti-
mates by insisting for example that each experiment chooses a different value of x,.

6. Computational Experience. The method of Section 3 has been tested on
dozens of applications; and despite the dire predictions made in Section 4 it has con-
sistently performed amazingly well, even on problems which were intended to serve as
bad examples. In virtually every case the right order of magnitude for the tree size was
found after ten trials. Three or four of the ten trials would typically be gross under-
estimates, but they were generally counterbalanced by overestimates, in the right pro-
portion.

We shall describe only the largest experiment here, since the method is of most
critical importance on a large tree. Figure 5 illustrates the problem that was considered,
the enumeration of uncrossed knight’s tours; these are nonintersecting paths of a
knight on the chessboard, where the object is to find the largest possible tour of this
kind. T. R. Dawson first proposed the problem in 1930 [2], and he gave the two 35-
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move solutions of Figure 5, stating that “‘il est probablement impossible de dénombrer
la quantité de ces tours; . . . vraisemblablement, on ne peut effectuer plus de 35 coups.”
Later [3, p. 20], [4, p. 35] he stated without proof that 35 is maximum.

N A A7 S /14 //P’[
\ Yol 1L/ \ NG /
Sz AL 7
(/L//b/ /IZ ? N < /// /L/L,,//
V1124 ya j
3 }/ 42; /é/ \ 1/ f\\\\\////‘d
//47/[/ VAl \ // :\ \\\ A /
T < ZZT TN

FIGURE 5. Uncrossed knight’s tours

The backtrack method provides a way to test his assertion; we may begin the
tour in any of 10 essentially different squares, then continue by making knight’s moves
that do not cross previous ones, until reaching an impasse. But backtrack trees that
extend across 30 levels or more can be extremely large; even if we assume an average
of only 3 consistent choices at every stage, out of at most 7 possible knight moves to
new squares, we are faced with a tree of about 33% = 205,891,132,094,649 nodes,
and we would never finish. Actually 320 = 3,486,784,401 is nearer the upper limit
of feasibility, since it is not at all simple to test whether or not one move crosses
another. It is certainly not clear a priori that an exhaustive backtrack search is eco-
nomically feasible.

The simple procedure of Section 3 was therefore used to estimate the number of
nodes in the tree, using c¢(#) = 1 for all ¢. Here are the estimated tree sizes found in
the first ten independent experiments:

1571717091 209749511
315291281 58736818301
8231 311
1793651 259271
59761491 6071489081

The medn value is 6,696,688,822. The next sequence of ten experiments gave the es-
timates

567911 238413491
111 6697691
569585831 5848873631
111 161

411 140296511

for an average of only 680,443,586, although the four extremely low estimates make
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this value look highly suspicious. (We could have avoided the “stupid moves” which
lead to such low estimates, by using the technique explained at the end of Section 5,
but the original method was being followed faithfully here.) After 100 experiments

had been conducted, the observed mean value of the estimates was 1,653,634,783.8,

with an observed standard deviation of about 6.7 x 10°.

The first few experiments were done by hand, but then a computer program was
written and it performed 1000 experiments in about 30 seconds. The results of these
experiments were extremely encouraging, because they were able to predict the size of
the tree quite accurately as well as its “shape” (i.e., the number N, of nodes per
level), even though the considerations of Section 4 seem to imply that N, cannot be
estimated well. Table 1 shows how these estimates compare to the exact values which
were calculated later; there is surprisingly good agreement, although the experiment
looked at less than 0.00001 of the nodes of the tree. Perhaps this was unusually
good luck.

This knight’s tour problem reflects the typical growth of backtrack trees; the
same problem on a 7 x 7 board generates a tree with 10,874,674 nodes and on a
6 x 6 board there are only 88,467. On a 9 x 9 board we need another method; the
longest known tour has 47 moves [18]. It can be shown that the longest reentrant
tour on an 7 x n board has at least n?> — O(n) moves, see [11].

7. Use of the Method in Practice. There are two principal ways to apply this
estimation method, namely by hand and by machine.

Hand calculation is especially recommended as the first step when embarking on
any backtrack computations. For one thing, the algorithm is great fun to apply, es-
pecially when decimal dice [20] are used to guide the decisions. The reader is urged
to try constructing a few random uncrossed knight’s tours, recording the statistics d
as the tours materialize; it is a captivating game that can lead to hours of enjoyment
until the telephone rings.

Furthermore, the game is worthwhile, because it gives insight into the behavior of
the algorithm, and such insight is of great use later when the algorithm is eventually
programmed; good ideas about data structures, and about various improvements in the
backtracking strategy, usually suggest themselves. The assignment of nonuniform prob-
abilities as suggested in Section 5 seems to improve the quality of the estimates, and
adds interest to the game. Usually about three estimates are enough to give a feeling
for the amount of work that will be involved in a full backtrack search.

For large-scale experiments, expecially when considering the best procedure in
some family of methods involving parameters that must be selected, the estimates can
be done r’apidly by machine. Experience indicates that most of the refinements sug-
gested in Section 5 are unnecessary; for example, the idea of collapsing the tree into
half as many levels does not improve the quality of the estimates sufficiently to justify
the greatly increased computation. Only the partial collapsing technique which avoids
“stupid moves” is worth the effort, and even.this makes the program so much more

This content downloaded from
139.19.183.100 on Wed, 12 Nov 2025 10:52:23 UTC
All use subject to https://about.jstor.org/terms



ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS 135

TABLE 1. Estimates after 1000 random walks

k Estimate, N,'c True value, Np
0 1.0 1
1 10.0 10
2 42.8 42
3 255.0 251
4 991.4 968
5 4352.2 4215
6 16014.4 15646
7 59948.8 56435
8 190528.7 182520
9 580450.8 574555
10 1652568.7 1606422
11 44244039 4376153
12 9897781.4 10396490
13 22047261.5 23978392
14 44392865.5 47667686
15 924649717.5 91377173
16 145815116.2 150084206
17 238608697.6 235901901
18 2530619529 315123658
19 355460520.9 399772215
20 348542887.6 427209856
21 328849873.9 429189112
22 340682204.1 358868304
23 429508177.9 278831518
24 318416025.6 177916192
25 38610432.0 103894319
26 75769344.0 49302574
27 74317824.0 21049968
28 0.0 7153880
29 0.0 2129212
30 0.0 522186
31 0.0 109254
32 0.0 18862
33 0.0 2710
34 0.0 346
35 0.0 50
36 0.0 8
Total 3123375511.1 3137317290

complex that it should probably be used only when provided as a system subroutine.
(A collection of system routines or programming language features, that allow both the
estimation algorithm and full backtracking to be driven by the same source language
program, is useful.)

Perhaps the most important application of backtracking nowadays is to combina-
torial optimization problems, as first suggested by D. H. Lehmer [15, pp. 168—169] .
In this case the method is commonly called a branch-and-bound technique (see [14]).
The estimation procedure of Section 3 does not apply directly to branch-and-bound al-
gorithms; however, it is possible to estimate the amount of work needed to test any
given bound for optimality. Thus we can get a good idea of the running time even in
this case, provided that we can guess a reasonable bound. Again, hand calculations
using a Monte Carlo approach are recommended as a first step in the approach to all
branch-and-bound procedures, since the random experiments provide both insight and
enjoyment.
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