Al and Software Verification
with JMC

Srinidhi Nagendra

 I’'m a PostDoc at MPI-SWS, Germany

* | completed PhD last December
“Automated Testing of Distributed Protocol
Implementations”

» Software Developer ~3 years

Outline

Two ways of using Al
The model checking problem.
Efficient model checking - DPOR

Tool - IMC

Next steps

Using Agents

* Testing/checking the programs

generated by Agents using JMC * Use Agents to make JMC better

* Write an Agent that annotates * Write better strategies to test
and runs JMC on the program programs within JMC
generated.

* Guide using effectiveness to find
* Give concrete bugs back to the bugs/coverage
agent to write better software

What is Model Checking?

Model checking is a verification technique that explores
all possible system states in a brute-force manner.

- Principles of Model Checking, MIT Press 2008

What’s a model?

r.f.ynction factorial(n: int): (result: int))

requires n >= 0 / SpeC/MOdel
L ensures result == if n == @ then 1 else n x factorial(n - 1)
{
[if n == @ then 1 else n x factorial(n - 1)] - Implementation
}

Dafny [‘

public static long factorial(int n) {
long result = 1;
for (int 1 = 2; 1 <= n; i++) {
result x= 1;

Does it do it correctly?

+ .
return result; faCtOrlaI('1)?

public static long factorial@int n}{ State ‘

if (n < 0) {
throw new IllegalAr

Exception("Negative numbers not allowed");

}

long(result)= 1;

for (int i = 2; i <= n; i++) {
result x= 1i;

}

return result;

Is it still a model?

Model Checking

* Explore all states by enumerating
them.

 E.g. Check that all values of state
variables do not violate the property

Model Checking

@

_ —»‘ . . e \What about unreachable states?
W o
> 09

Model Checking

SO

e Enumerate executions

' . ‘ ‘ "7« How long should each execution be?

 Bounded model checking

Testing vs Model Checking

 Randomly sample * Exhaustively enumerate
executions. all executions.
 May/May not find bugs. * Proof of bug or its
absence.

* Reproducibility is a
challenge. Easy to reproduce.

State explosion

oo many executions to
explore.

e Unrealistic to enumerate

* Jesting becomes
indistinguishable from model
checking

e Solution: Partial order reduction

public static BigInteger parallelFactorial(int n, int threadCount) {
if (n < @) throw new IllegalArgumentException("Factorial not defined for negative
if (n==0 || n==1) return BigInteger.ONE;

CAtomicReference<BigInteger%)result = new AtomicReference<>(BigInteger.ONE);
ExecutorService(§xecuto€)= Executors.newFixedThreadPool(@hreadCounf);

Add|t|0na| State // Update the shared result atomically

\\\\\\\\\\\\\\\\\\\\\iis“lt.getAndUpdate(curriii’:i’ijiiiiiitiiiiglngartial)):

return result.get();

Faster
Implementation

Same
executions

Partial order reduction

 Merge executions that are equivalent
under some relation.
. . . RESEARCH-ARTICLE | OPEN ACCESS | @@
 Dynamic: Do this by running the
program.

Truly stateless, optimal dynamic partial order reduction

- POPL 2022

o (Static: Just analysing the code and
not running it)

 Optimal: Explore each unique execution
only once

Counters

public class Counter {
private int count;

public Counter() { x///////i;} \;\\\\\\\\\

this.count = 0;

} Read ? ? ?

public int get() {
return count; erte ‘ ‘ ‘
| ~d ,
public void incr() {
count++;
¥

}

Counters

public class Counter {
private int count;

public Counter() {
this.count = 0;

- ’
s *
' L34 *
* . *
Y
* s Q
(3 . Q
.t
. Py *
. . Q
-
» . Q
. st o
* - . o
.
- as® *
(3 . Q
.
- .. Q
- . Q
-
g e
s ® *
s . *
as® *
‘-I 0.
L
a®

public int get() {

return count; Write ‘ ‘ ‘ '
T ot @

}

} .
In general. n threads = n! Executions

JMC working

public class CounterTest {

i T NS S e s e T PN e S o e AN e i e

i @JmcCheck |
g_@JmcCheckConflguratlon(numIteratlons = 10) }
-pu. lc VOl. tEStRandomCOunter) e

ParametricCounter counter = new ParametricCounter(2); ° erte teStS
counter.run();
assert counter.getCounterValue() == 2;
+
 Annotate them
@JmcCheck
~QnclheckConfigurationlstrategy = "trust”, numIterations = 200)

{_@ImcExpectExecutions(120) j

'publlc void testTrustCounter() { * Run the teStS
ParametricCounter counter = new ParametricCounter(5);
counter.run();
assert counter.getCounterValue() == 5;

JMC internals

Bytecode instrumentation

* Add stubs for every read and write
events

« GETFIELD and PUTFIELD bytecodes

e Add stubs for thread creation and
deletion

* This is a nightmare. Too many ways
{0 Ccreate concurrency

Bytecode instrumentation

public int get() {
return count; >

public int get() {
IJmcRuntimeUtils. readEventWithoutYield(
this, "org/mpi_sws/jmc/test/Counter", "count", "I");
int varlee00 = this.count;
IJmcRuntime.yield();
return varlo000,

Bytecode Instrumentation

Java Agent + ASM (asm.ow?2.i0)
» Java allows an agent to) AISM el‘o”C;WS cganging the
run with the JVM class byte code

* Qur philosophy: Do as
little Instrumentation as
necessary

* Agent code runs before
every class Is loaded

http://asm.ow2.io

Threads

public class CounterThread extendsj Thread | public class CounterThread extends{JmcThread §

{ @verride !
{ public void runl() { |

f @Override |

 Why”? We need to control every thread.

e Know when it starts and finishes and
prevent deadlocks

Thread Challenges

Thread, Runnable

Future, FutureTask, CompletableFuture
ExecutorService

ThreadPool

Virtual Threads?

JMC Runtime

 Imposes a co-operative multi threading
environment

 Each thread yields control when an event occurs

 Uses a Strategy to decide which thread to resume

Runtime working

Pass

1
l
' 2 @ o o ©
- | l l l l
1
|
4

o O
\\ //

1 2 3 4
Scheduler

Thread

Basic Strategy

Cannot resume threads randomly. Leads to deadlock.

E.g. Allowing a thread that wants a lock that is
already acquired

We implement a basic event tracker that marks
threads as enabled/disabled

Currently supports synchronized and ReentrantLock.

* Need to extend support

Strategy class

JMC Summary

* A testing framework that verifies your
code.

* Works by instrumenting byte code and
running under a custom runtime

* Try it and let us know

e Disclaimer - under development

What’s next?

Other strategies

PCT - A Randomized Scheduler with Probabilistic Guarantees
of Finding Bugs - ASPLOS ’10

PCTCP - Randomized Testing of Distributed Systems with
Probabilistic Guarantees OOPSLA ‘18

(RA)POS - Effective random testing of concurrent programs
ASE °07

SURW - Selectively Uniform Concurrency Testing ASPLOS ‘25

QL (hard) - Learning-based controlled concurrency testing
OOPSLA ‘20

Build an agent to write a strategy for you.

Evaluate based on how many executions/bugs it covers

Questions?
(8] Pyt (=]
o

