
AI and Software Verification 
with JMC
Srinidhi Nagendra



Me

• I’m a PostDoc at MPI-SWS, Germany


• I completed PhD last December  
“Automated Testing of Distributed Protocol 
Implementations”


• Software Developer ~3 years

2



Outline
• Two ways of using AI


• The model checking problem.


• Efficient model checking - DPOR


• Tool - JMC


• Next steps



Using Agents

• Testing/checking the programs 
generated by Agents using JMC


• Write an Agent that annotates 
and runs JMC on the program 
generated.


• Give concrete bugs back to the 
agent to write better software

• Use Agents to make JMC better


• Write better strategies to test 
programs within JMC


• Guide using effectiveness to find 
bugs/coverage



What is Model Checking?

Model checking is a verification technique that explores 
all possible system states in a brute-force manner.

- Principles of Model Checking, MIT Press 2008



What’s a model?

Spec/Model

Implementation



Does it do it correctly?

factorial(-1)?



Is it still a model?

State



Model Checking

S0

• Explore all states by enumerating 
them.


• E.g. Check that all values of state 
variables do not violate the property



Model Checking

S0

• What about unreachable states?



Model Checking

• Enumerate executions


• How long should each execution be?


• Bounded model checking

S0

……



Testing vs Model Checking

• Randomly sample 
executions.


• May/May not find bugs.


• Reproducibility is a 
challenge.

• Exhaustively enumerate 
all executions.


• Proof of bug or its 
absence.


• Easy to reproduce.



State explosion

…

• Too many executions to 
explore.


• Unrealistic to enumerate


• Testing becomes 
indistinguishable from model 
checking


• Solution: Partial order reduction



Faster 
implementation

Additional state



[ 1, 2, 3, 4, … , … , … , 17, 18, 19, 20]



[ 1, 2, 3, 4, … , … , … , 17, 18, 19, 20]

Same  
executions



Partial order reduction

• Merge executions that are equivalent 
under some relation.


• Dynamic: Do this by running the 
program.


• (Static: Just analysing the code and 
not running it)


• Optimal: Explore each unique execution 
only once

- POPL 2022



Counters

Read

Write



Counters

Read

Write

In general. n threads = n! Executions



Demo



JMC working

• Write tests


• Annotate them


• Run the tests



JMC internals

Custom RuntimeBytecode 
Instrumentation



Bytecode instrumentation

• Add stubs for every read and write 
events


• GETFIELD and PUTFIELD bytecodes


• Add stubs for thread creation and 
deletion


• This is a nightmare. Too many ways 
to create concurrency



Bytecode instrumentation



Bytecode Instrumentation

• Java allows an agent to 
run with the JVM


• Agent code runs before 
every class is loaded

• ASM allows changing the 
class byte code


• Our philosophy: Do as 
little instrumentation as 
necessary

Java Agent           +           ASM (asm.ow2.io)

http://asm.ow2.io


Threads

• Why? We need to control every thread. 


• Know when it starts and finishes and 
prevent deadlocks



Thread Challenges

• Thread, Runnable


• Future, FutureTask, CompletableFuture


• ExecutorService


• ThreadPool


• Virtual Threads?



JMC Runtime

• Imposes a co-operative multi threading 
environment


• Each thread yields control when an event occurs


• Uses a Strategy to decide which thread to resume



Runtime working

1 2 3 4

Strategy

1

Scheduler 
Thread

2

1

4
…



Basic Strategy
• Cannot resume threads randomly. Leads to deadlock.


• E.g. Allowing a thread that wants a lock that is 
already acquired


• We implement a basic event tracker that marks 
threads as enabled/disabled


• Currently supports synchronized and ReentrantLock. 

• Need to extend support 



Strategy class



JMC Summary

• A testing framework that verifies your 
code. 


• Works by instrumenting byte code and 
running under a custom runtime


• Try it and let us know


• Disclaimer - under development



What’s next?



Other strategies
• PCT - A Randomized Scheduler with Probabilistic Guarantees 

of Finding Bugs - ASPLOS ’10


• PCTCP - Randomized Testing of Distributed Systems with 
Probabilistic Guarantees OOPSLA ‘18


• (RA)POS - Effective random testing of concurrent programs 
ASE ’07


• SURW - Selectively Uniform Concurrency Testing ASPLOS ‘25


• QL (hard) - Learning-based controlled concurrency testing 
OOPSLA ‘20



Build an agent to write a strategy for you.
Evaluate based on how many executions/bugs it covers



Questions?


